2019人教六年级下册数学教案全集_第1页
2019人教六年级下册数学教案全集_第2页
2019人教六年级下册数学教案全集_第3页
2019人教六年级下册数学教案全集_第4页
2019人教六年级下册数学教案全集_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2019人教版六年级下册数学授课设计全集2019人教版六年级下册数学授课设计全集22/222019人教版六年级下册数学授课设计全集2019最新人教版六年级下册数学授课设计全集【授课目的】1.在熟悉的生活情境中初步认识负数,能正确地读写正数和负数,知道0既不是正数也不是负数。2.初步学会用负数表示一些平时生活中的实责问题。3.能借助数轴初步理解正数、0和负数之间的关系。【重点难点】负数的意义和数轴的意义及画法。【课时安排】3课时:负数的初步认识2课时在数轴上表示正数、0和负数1课时【知识结构】第1课时负数的初步认识(1)【授课内容】负数的初步认识(1)(教材第2页例1)。【授课目的】结合生活实例,引导学生初步理解正、负数可以表示两种相反意义的量。【重点难点】领悟负数的重要性。【授课准备】多媒体课件。【情况导入】1.教师利用课件向学生显现教材第2页主题图。(有条件的可播放天气预告视频)2.引导学生观察图片,说出图中内容。(教师:观察上图,你能发现什么?0℃代表什么意思?-3℃和3℃各代表什么意思?)引出课题并板书:负数的初步认识(1)【新课讲解】授课教材第2页例1。(1)教师板书重点数据:0℃。1/22(2)教师讲解0℃的意思。0℃表示淡水开始结冰的温度。比0℃低的温度叫零下温度,平时在数字前加“-”(负号):如-3℃表示零下3摄氏度,读作负三摄氏度。比0℃高的温度叫零上温,在数字前加“+”(正号),一般情况下可省略不写:如+3℃表示零上3摄氏度,读作正三摄氏,也可以写成3℃,读作三摄氏度。(3)我们来看一下课本上的图,你知道北京的气温吗?最高气平易最低气温都是多少呢?随机点同学回答。(4)方才同学回答得很对,读法也很正确。(5)认识了北京的气温,下面我想请同学告诉我哈尔滨的气温,它与上海气温比较又怎样呢?用手势告诉大家好吗?学生谈论合作,交流反响。(6)请同学们把图上其他各地的温度都写出来,并读一读。(7)教师显现学生不一样的表示方法。(8)小结:经过刚刚的学习,我们用“+”和“-”就能正确地表示零上温度和零下温度。【课堂作业】完成教材第4页的“做一做”第1题。组织学生独立完成,指名回答。答案:-18℃温度低。【课堂小结】经过这节课的学习,你有什么收获?【课后作业完成练习册中本课时的练习。1课时负数的初步认识(1)0℃-3℃3℃(+3℃)2/22第2课时负数的初步认识(2)【授课内容】负数的初步认识(2)(教材第3页例2)。【授课目的】经过表现存折上的明确数据,让学生领悟负数在生活中的广泛应用,进一步领悟负数的含义。【重点难点】领悟引入负数的必要性,初步理解负数的含义。【情况导入】教师:上一节课我们已经一起学习了气温的表示,谁能说一说温度都是怎样读写的?组织学生谈论回忆上一课内容。师:很好,大家都很棒。今天我们连续学习负数知识。引出课题并板书:负数的初步认识(2)【新课讲解】1.授课例2。(1)教师出示存折明细表示图。(教材第3页的主题图)教师:同学们能说说“支出(-)或(+)”这一栏的数各表示什么意义吗?组织学生分组谈论、交流,尔后指名报告。(2)引导学生概括总结:像2000,500这样的数表示的是存入的钱数;而前面有“-”号的数,像-500,-132这样的数表示的是支出的钱数。(3)教师:上述数据中500和-500意义相同吗?(500和-500意义相反,一个是存入,一个是支出)。你能用刚刚的方法快速而又正确地表示出向东走100m和向西走200m、前进20步和退后25步吗?说说你是怎么表示的?师把学生的表示结果一一板书在黑板上。2.概括正数和负数。(1)你能把黑板上板书的这些数进行分类吗?小组谈论交流。(2)教师显现分类的结果,合时讲解。像+8,+4,+2000,+500,+100,+20这样的数,我们把它们叫做正数,前面的+号也可以省略不写。像-8,-4,-500,-20这样的数,我们把它叫做负数。(3)那么0应该归为哪一类呢?组织学生谈论,相互公布建议。师设难:“我认为0应该归为正数一类。”概括:0既不是正数也不是负数,它是正数和负数的分界点。(4)你在什么地方见过负数?教师激励学生注意联系实质举出更多的例子。【课堂作业】完成教材第4页的“做一做”第2题。组织学生着手填一填,在小组中交流检查。3/22答案:正数有:+4+415负数有:-713【课堂小结】经过这节课的学习,你有什么收获?【课后作业】完成练习册中本课时的练习。第2课时负数的初步认识(2)正数:+8负数:-8+4-4+2000-2000+500-500+100-100+20-200既不是正数也不是负数。4/22第3课时在数轴上表示正数、0和负数【授课内容】借助数轴理解正数和负数的意义(教材第5页例3)。【授课目的】1.借助数轴初步理解正数、0、负数。2.初步领悟数轴上数的序次,完成对数的结构的初步成立以及正数与负数的比较。【重点难点】认识数轴、0。【情况导入】教师用CAI课件演示教材第5页的主题图。教师:怎样在一条直线上表示出他们运动后的情况呢?【新课讲解】授课例3。(1)教师:怎样用数来表示这些学生和大树的相对地址关系呢?组织学生在小组中议一议,尔后报告。(2)教师结合学生的报告,用课件出示数轴,在相应点的下方标出对应的数。(3)让学生说出直线上其他几个点代表的数,让学生对数轴上的点表示的正负数形成相对完满的认识。(4)教师总结:我们可以在直线上表示出正数、0、负数,像这样的直线我们叫做数轴。(5)引导学生观察数轴:①从0起往右依次是?从0起往左依次是?你发现什么规律?②在数轴上分别找到1.5和-1.5对应的点。若是从起点分别到1.5和-1.5处,应怎样运动?师及时小结,数轴除了可以表示整数,还可以表示小数、分数。每个数都能在数轴上找到它们相对应的点。【课堂作业】1.完成教材第5页的“做一做”。学生独立练习,指名报告。2.完成教材第6页练习一的第4题。第4题组织学生独立完成,并在小组中相互交流、检查。教师用课件出示答案、校订。5/22答案:1.略2.第4题:点A表示的数是-7;点B表示的数是-4;点C表示的数是-1;点D表示的数是3;点E表示的数是6。【课堂小结】经过这节课的学习,你有什么收获?【课后作业】完成练习册中本课时的练习。3课时在数轴上表示正数、0和负数上面这样的直线叫做数轴。6/22第二单元:百分数(二)【授课目的】1.理解折扣、成数、税率、利率的含义,知道它们在生活中的简单应用,会进行这方面的简单计算。2.在理解、解析数量关系的基础上,使学生能正确地回答相关百分数的问题。【重点难点】利用百分数解决实责问题。【授课指导】注意看法之间的联系与差异,以提高学生解决问题的能力。本单元的看法很多,授课时要突出重点,帮助学生弄清看法间的联系与差异。只有理解了百分数的含义,才能正确地运用它解决百分率、折扣、成数、税率、利率等实责问题。再如,百分数和分数诚然在实质上是相同的,但在意义上还是有必然的区其他:百分数表示两个数之间的关系;分数既可以表示一个详尽的数、又可以表示两个数之间的关系。【课时安排】建议共分5课时:折扣1课时成数1课时税率1课时利率1课时解决问题1课时【知识结构】第1课时折扣【授课内容】7/22折扣(教材第8页的内容,练习二第1~3题)。【授课目的】1.明确折扣的含义。2.能熟练地把折扣写成分数、百分数。3.正确解答相关折扣的实责问题。4.学会合理、灵便地选择方法,锻炼运用数学知识解决实责问题的能力。【重点难点】1.会解答相关折扣的实责问题。2.合理、灵便地选择方法,解答相关折扣的实责问题。【授课准备】多媒体课件。【情况导入】圣诞节时期各商家搞了哪些促销活动?谁来说说他们是怎样进行促销的?(学生报告检查情况。)【新课讲解】1.授课折扣的含义,会把折扣改写成百分数。(1)刚刚大家检查到的打折是商家常用的手段,是一个商业用语,那么你所检查到的打折是什么意思呢?比方说打“七折”,你怎么理解?(2)你们举的例子都很好,老师也采集到某商场打七折的售价标签。(电脑显示)①大衣,原价:1000元,现价:700元。②围巾,原价:100元,现价:70元。③铅笔盒,原价:10元,现价:?④橡皮,原价:1元,现价:?(3)动脑筋想一想:若是原价是10元的铅笔盒,打七折,猜一猜现价会是多少?若是原价是元的橡皮,打七折,现价又是多少?(4)仔细观察,商品在打七折时,原价与现价有一个什么样的关系?带着这样的问题,可以利用计算器,也可以借助课本,四人小组一起试着找到答案。(5)谈论,找规律。A.学生着手操作、计算,并在计算或谈论中发现规律。B.学生报告搜寻的方法:利用计算器,原价乘以70%恰好是标签的售价或现价除以原价大体8/22都是70%;或查书等等。(6)概括,得定义。A.经过小组谈论,谁能说说打七折是什么意思?打八折是什么意思?打八五折呢?B.概括地讲,打折是什么意思?若是用分母是十的分数,该怎样表示?(“几折”就是十分之几,也就是百分之几十)C.平时来讲,商店有时降价销售商品,叫做打折扣销售,通称“打折”。几折就是十分之几,也就是百分之几十。如八五折就是85%,九折就是90%。一般情况下,不把折扣写成十分之几这样的分数形式,写成分数时,有时会出现小数(比方八五折就会写成8.5),不便于计算和理解。10(7)练习。①四折是十分之(),改写成百分数是()。②六折是十分之(),改写成百分数是()。③七五折是十分之(),改写成百分数是()。④九二折是十分之(),改写成百分数是()。2.运用折扣含义解决实责问题。出示问题(1):爸爸给毛毛雨买了一辆自行车,原价180元,现在商店打八五折销售。买这辆车用了多少钱?①导学生解析题意:打八五折怎么理解?是以谁为单位“1”?②找出数量关系式。先让学生找出单位“1”,尔后再找出数量关系式:原价×85%=实质售价③学生独立依照数量关系式,列式解答。④全班交流。依照学生的报告,板书:180×85%=153(元)答:买这辆车用了153元。出示问题(2):爸爸买了一个随身听,原价160元,现在只花了九折的钱,比原价低价了多少钱?①导学生理解题意:只花了九折的钱怎么理解?以谁为单位“1”?②学生试算,独立列式。③全班交流。依照学生的报告,板书:第一种算法:原价160元,减去现价,就是比原价低价多少钱。160-160×90%=160-144=16(元)9/22第二种算法:原价160元,现价比原价低价了(1-90%)。160×(1-90%)=160×10%=16(元)重点引导学生理解第二种算法,知道现价比原价低价了10%。3.典例讲析。例在某商店促销活动时,原价800元的某品牌自行车九折销售,最后剩下的几辆车,商家再次打八折销售,最后的几辆车售价多少元?解析:原价800元,第一次打九折销售,价格是原价的90%,再次打八折销售,价格是第一次打九折后的80%。可以先求出第一次打折后的价格,再求出第二次打折后的价格,即为现在的售价。解:800×90%×80%=720×80%=576(元)答:最后的几辆车售价是576元。【课堂作业】1.(1)爸爸买了一个剃须刀,原价240元,现在只花了八折的钱,比原价低价了多少钱?A.打八折怎么理解?是以谁为单位“1”?B.学生试做,讲评。(2)判断:①商品打折扣都是以原商品价格为单位“1”,即标准量。()②一件上衣现在打八折销售,就是说比原价降低10%。()2.完成教材第8页“做一做”练习题。3.完成教材第13页练习二第1~3题。说明:第1题是一道开放题,有多种可能,应注意给学生供应交流自己想法的机遇。练习后可指出“五折”也可以说成“半价”,丰富学生的生活经验。第2题,要注意指导学生理解9.6元表示的实质含义,它与八折有什么关系。使学生明确元就是打折后比原价少的钱数,它相当于原价的1—80%,在此基础上让学生列出方程或算式。答案:1.(1)240-240×80%=48(元)(2)①√②×2.第8页“做一做”:523.练习二第1题:(1)×(元)2.4×(元)10/221×(元)3×(元)(2)(此答案不唯一)可以一种面包,也可以两种或两种以上合。独各种打折后的面包:①3÷0.75=4(个)合各种打折后的面包:②3÷0.5=6(个)○33÷1.5=2(个)④3÷1.2=2(个)⋯⋯(元),再1个打折后0.5元的面包。⑤可以3个0.5元的面包,2个0.75元的面包。可以1个1.5元的面包,2个0.75元的面包⋯⋯第3:解析:按原价的八折,惠价占二折,9.6元占原价的20%,求出原价,用除法算。解答:÷20%=48(元)【堂小】通的学你有什么收?【后作】完成册中本的。第1折扣八五折180×85%=153(元)九折160×(1-90%)=160×10%=16(元):解决与折扣相关的上是求一个数的百分之几是多少和已知一个数的百分之几是多少求个数的。在解析折扣,不要把打折后的价格看作定价,正确区分定价、价和售价是解决折扣的关。11/22第2课时成数【授课内容】成数(教材第9内容)。【授课目】1.明确成数的含。2.能熟的把成数写成分数、百分数。3.正确解答相关成数的。【重点点】1.成数的理解。2.成数的算。【授课准】多媒体件。【情况入】收成,常用“成数”来表示。比方,上写道:“今年我省油菜籽比昨年增二成”⋯⋯教:同学有留意到似的新道?(学生相关)【新授】1.介成数的含,会把成数改写成分数,百分数。(成数:表示一个数是另一个数的十分之几,通称“几成”)(1)才大家都了很多有成数的展化情况,那么些“成数”是什么意思呢?比方,增“二成”,你怎么理解?(学生并回答)教板:成数分数百分数二成十分之二20%(2)以下成数表示什么?①出口汽量比昨年增加三成。里的“三成”表示什么?②北京出游人数比昨年增加两成。里的两成表示什么?引学生并回答。2.运用成数的含解决。(1)出示教材第9例2:某工厂昨年用350万千瓦,今年比昨年二成五,今年用多少万千瓦?(2)解析目,理解意:①今年比昨年二成五怎么理解?是以哪个量位“1”?12/22②找出数量关系式。先让学生找出单位“1”,尔后再找出数量关系式:今年的用电量=昨年的用电量×(1-25%)③学生独立依照关系式,列式解答。④全班交流。方法一:350×(1-25%)=350×75%=350×0.75=262.5(万千瓦时)方法二:350×(1-25%)=350×75%=350×(万千瓦时)【课堂作业】完成教材第9页“做一做”。答案:15000÷(1+20%)=15000÷1.2=12500(人)【课堂小结】这节课我们一起学习了相关成数的知识,你们对成数的知识有哪些认识?【课后作业】完成练习册中本课时的练习。第2课时成数13/22第3课时税率【授课内容】税率(教材第10页相关纳税的内容,练习二第6、7题)。【授课目的】1.使学生知道纳税的含义和重要意义,知道应纳税额和税率的含义,以依照详尽的税率计算税款。2.在计算税款的过程中,加深学生对社会现象的理解,提高学生解决问题的能力。3.增强学生的法制意识,使学生知道每个公民都有依法纳税的义务。【重点难点】1.税额的计算。2.税率的理解。【授课准备】多媒体课件。【情况导入】1.口答算式。(1)100的5%是多少?(2)50吨的10%是多少?(3)1000元的8%是多少?(4)50万元的20%是多少?2.什么是比率?【新课讲解】1.阅读教材第10页相关纳税的内容。说说:什么是纳税?2.税率的认识。(1)说明:纳税的种类很多,应纳税额的计算方法也不一样样。应纳税额与各种收入的比率叫做税率,一般是由国家依照不一样纳税种类定出不一样的税率。(2)试说说以下税率表示什么。A.商店按营业额的5%缴纳个人所得税。这里的5%表示什么?B.某人彩票中奖后,按奖金的20%缴纳个人所得税。这里的20%表示什么?3.税款计算。(1)出示例3:一家饭店十月份的营业额约是30万元。若是按营业额的5%缴纳营业税,14/22这家饭店十月份应缴纳营业税约多少万元?(2)解析题目,理解题意。引导学生理解“按营业额的5%缴纳营业税”的含义,明确这里的5%是营业税与营业额比较的结果,也就是缴纳的营业税占营业额的5%,题中“十月份的营业额是30万元”,因此十月份应缴纳的营业税就是30万元的5%。(3)学生列出算式。求一个数的百分之几是多少,用乘法计算。列式:30×5%(4)学生试一试计算。(5)报告交流。30×5%这个算式有两种计算方法。5方法1:把百分数化成分数来计算。30×5%=30×(万元)方法2:把百分数化成小数来计算。30×5%=30×(万元)【课堂作业】1.牢固练习:教材第10页“做一做”。2.完成教材第14页练习二第6题。答案:1.(5000-3500)×3%=45(元)×3%=9(元)【课堂小结】这节课我们一起学习了相关纳税的知识,你们对纳税的知识有哪些认识?【课后作业】1.完成练习册中本课时的练习。2.教材第14页第7题。第3课时税率应纳税额=收入额×税率收入额=应纳税额÷税率税率=应纳税额÷收入额×100%30×5%(万元)答:10月份应缴纳营业税约1.5万元。15/2216/22第4课时利率【授课内容】利率(教材第11页相关利率的内容)。【授课目的】1.经过授课使学生知道存储的意义;明确本金、利息和利率的含义;掌握计算利息的方法,会进行简单计算。2.对学生进行节约节约,积极参加存储以及支援国家、灾区、贫困地区建设的思想道德教育。【重点难点】1.掌握利息的计算方法。2.正确地计算利息,解决利息计算的实责问题。【授课准备】多媒体课件。【情况导入】随着改革开放,社会经济不断发展,人民收入增加,人们可以把暂时不用的钱存入银行,存储起来。这样一来可以支援国家建设,二来对个人也有好处,既安全、有计划,同时又获取利息,增加收入。那么,怎样计算利息呢?这就是我们今天要学的内容。【新课讲解】1.介绍存款的种类、形式。存款分为活期、整存整取和零存整取等方式。2.阅读教材第11页的内容,自学谈论例4,理解本金、利息、税后利息和利率的含义。(比方:王奶奶2012年月8月1日把5000元钱存入银行,整存整取两年,到2013年8月1日,王奶奶不但可以取回存入的5000元,还可以获取银行多付给的150元,共5150元。)(注:这里不考虑利息税)本金:存入银行的钱叫做本金。王奶奶存入的5000元就是本金。利息:取款时银行多支付的钱叫做利息。利率:利息和本金的比值叫做利率。(1)利率由银行规定,依照国家的经济发展情况,利率有时会有所调整,利率有按月计算的,也有按年计算的。(2)阅读教材第11页表格,认识同一时期各银行的利率是必然的。3.学会填写存款凭条。把存款凭条画在黑板上,请学生试一试填写。尔后评讲。(要填写的项目:户名、存期、存入金额、存种、密码、地址等,最后填上日期。)4.利息的计算。(1)出示利息的计算公式:17/22利息=本金×利率×时间(2)计算方法:若依照2012年7月的银行利率,若是王奶奶的5000元钱整存整取,两年到期的利息是多少?学生计算后交流,教师板书:5000×3.75%×2=375(元)加上王奶奶存入的本金5000元,到期时她能获取本金和利息,一共5375元。【课堂作业】本题是相关“打折”和“纳税”的问题,是百分数的详尽应用,在练习时应让学生说说自己每一步计算的意义,并进行集体校订。【课堂小结】经过本节课的学习,你学会了什么?什么叫本金?什么叫利息?什么叫利率?怎样计算利息?【课后作业】1.完成练习册中本课时的练习。2.教材第14页第9题。第4课时利率利息=本金×利率×时间任何一种存款,在计算利息时,都要乘以存入的时间,若是存款的利率是年利率,计算时所乘时间单位应是年,若是存款的利率是月利率,计算时所乘时间单位应是月,不要一律按年计算。18/22第5课时解决问题【授课内容】用百分数解决问题。(教材第12页例5)【授课目的】1.熟练地掌握百分数应用题的数量关系,并能解决问题。2.培养学生优异的学习习惯。【重点难点】仔细审题,用百分数解决实责问题。【授课准备】多媒体课件。【复习导入】前面我们已经学习了折扣、成数、税率、利率等百分数在生活中的详尽应用,今天我们一起来学习它们更多的应用,学习新知识从前,我们来回想下从前的内容。口头列式。(1)妈妈想买一件原价500元的裙子,五折此后这条裙子多少钱?(2)爸爸这个月薪水由原来的6000元涨了一成五,爸爸现在薪水是多少?(3)爸爸的月薪水是6000,扣除3500个人免税征额后的部分需要按3%的税率缴纳个人所得税,他应缴个人所得税多少元?(4)小云将压岁钱1000元存入银行,存期为3年,年利率为4.25%。到期支取时,小云一共能取回多少钱?师:这几道题分别属于什么种类的应用题?学生交流,报告。【新课讲解】授课例5。1.学生读题,明确已知条件及问题,试一试说说自己的解题思路。2.利用提问,引导学生思虑回答,概括出解题思路。教师:“满100元减50元”是什么意思?引导回答:就是在总价中取整百元部分,每个100元减去50元。不满100元的零头部分不优惠。解题思路:(1)在A商场买,直接用总价乘以50%就能算出实质开销。(2)在B商场买,先看总价中有几个100,230里有两个100,尔后从总价里减去2个50元。3.学生独立列出算式后,让他们计算并给出结果。板书:A:230×50%=115(元)19/22B:230-2×50=130(元)A<B,A更省钱。4.回顾与反思。提问:经过计算,我们知道了A商场更省钱,在什么时候两个商场价格差不多呢?反思:看起来满100减50元不如打五折优惠。若是总价能凑成整百多一点就差不多了。【课堂作业】完成教材第12页“做一做”。学生独立完成,教师讲解。答案:A商场:120-40=80(元)B:120×60%=72

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论