




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
目录下册第一章复习下册第二章复习下册阶段综合测试三(月考)下册第三章复习九年级下册综合测试初中总复习基础测试初中总复习综合测试数学·新课标(BS)下册第一章复习下册第一章复习┃知识归纳┃知识归纳┃数学·新课标(BS)下册第一章复习┃知识归类数学·新课标(BS)2.30°,45°,60°角的三角函数值三角函数角α
sinαcosαtanα30°
45°
60°
1下册第一章复习┃知识归类数学·新课标(BS)3.仰角和俯角.在视线与水平线所成的角中,视线在水平线上方的叫做
________,视线在水平线下方的叫做________
.4.坡度和坡角通常把坡面的铅直高度h和水平宽度l之比叫_______
,用字母i表示,即i=______
.把坡面与水平面的夹角叫做_____,记作∠α,于是i=_____
=tanα,显然,坡度越大,α角越大,坡面就越陡.仰角俯角坡度坡角►考点一求三角函数值
下册第一章复习┃考点攻略┃考点攻略┃数学·新课标(BS)B下册第一章复习┃考点攻略数学·新课标(BS)下册第一章复习┃考点攻略数学·新课标(BS)►考点二特殊角的三角函数值下册第一章复习┃考点攻略数学·新课标(BS)►考点三利用直角三角形解决和高度有关的问题
例3如图X1-1,在一次数学课外实践活动中,要求测教学楼AB的高度.小刚在D处用高1.5m的测角仪CD,测得教学楼顶端A的仰角为30°,然后向教学楼前进40m到达EF,又测得教学楼顶端A的仰角为60°.求这幢教学楼AB的高度.下册第一章复习┃考点攻略数学·新课标(BS)下册第一章复习┃考点攻略数学·新课标(BS)下册第一章复习┃考点攻略数学·新课标(BS)下册第一章复习┃考点攻略数学·新课标(BS)►考点四利用直角三角形解决平面图形中的距离问题例4
为建设“宜居宜业宜游”山水园林式城市,内江市正在对城区沱江河段进行区域性景观打造,某施工单位为测得某河段的宽度,测量员先在河对岸岸边取一点A,再在河这边沿河边取两点B,C,在B处测得点A在北偏东30°方向上,在点C处测得点A在西北方向上,量得BC长为200米.求小河的宽度(结果保留根号).下册第一章复习┃考点攻略数学·新课标(BS)下册第一章复习┃考点攻略数学·新课标(BS)下册第一章复习┃考点攻略数学·新课标(BS)下册第一章复习┃试卷讲练数学·新课标(BS)考查意图
运用直角三角形边角关系以量化的方式分析直角三角形,是中考的必考内容之一,本卷以直接考查三角函数为主,以综合解直角三角形为辅,考查学生对于直角三角形的边角关系的认识与理解,并揭示其内在联系.知识与技能三角函数的概念和性质1,3,4,7特殊角的三角函数值2,11,12,17边角关系6,13,18,19应用及综合5,8,9,10,14,15,16,20,21,22,23,24思想方法数形结合思想亮点16题以图形变换的方式考查对解直角三角形方法的理解,24题以直角三角形为平台,综合考查学生的计算能力和逻辑推理能力.数学·新课标(BS)下册第二章复习下册第二章复习┃知识归类┃知识归纳┃数学·新课标(BS)1.二次函数的概念一般地,形如
(a,b,c是常数,
)的函数,叫做二次函数.[注意](1)等号右边必须是整式;(2)自变量的最高次数是2;(3)当b=0,c=0时,y=ax2是特殊的二次函数.2.二次函数的图象二次函数的图象是一条
,它是轴对称图形,其对称轴平行于
轴.y=ax2+bx+ca≠0抛物线y下册第二章复习┃知识归类数学·新课标(BS)[注意]
二次函数y=ax2+bx+c的图象的形状、大小、开口方向只与a有关.下册第二章复习┃知识归类数学·新课标(BS)开口向上开口向上开口向下开口向下
(h,k)
________________________________________________3.二次函数的性质下册第二章复习┃知识归类数学·新课标(BS)下册第二章复习┃知识归类数学·新课标(BS)减小增大减小增大增大减小增大减小下册第二章复习┃知识归类数学·新课标(BS)4.二次函数图象的平移一般地,平移二次函数y=ax2的图象可得到二次函数y=a(x-h)2+k的图象.[注意]
抓住顶点坐标的变化,熟记平移规律,左加右减,上加下减.下册第二章复习┃知识归类数学·新课标(BS)下册第二章复习┃知识归类数学·新课标(BS)6.利用二次函数求最值的问题(1)利润最大化——体会利用二次函数求解最值的一般步骤.利用二次函数解决“利润最大化”问题的一般步骤:①找出销售单价与利润之间的函数关系式(注明范围);②求出该二次函数图象的顶点坐标;③由函数顶点坐标求得其最值,即求得“最大利润”.下册第二章复习┃知识归类数学·新课标(BS)(2)产量最大化——体会利用二次函数求解最值的几种方式.产量最大化问题与最大利润问题类似,若问题中的函数类型是二次函数,可以利用求二次函数的顶点处的函数值来解决.可以应用配方法求其顶点,利用函数图象也可以判断函数的最值.[注意]在求最值问题中,我们常用二次函数的表达式求顶点坐标来求最值;也可以运用“数形结合”的方法,结合函数图象来判断求解最值;还可以利用列表的方法估计最值.下册第二章复习┃知识归类数学·新课标(BS)(3)与图形有关的最值问题直角三角形中矩形的最大面积:要求面积就需要知道矩形的两条边,因此,把这两条边分别用含x的代数式表示出来,代入面积公式就能转化为数学问题了.[警示]在利用二次函数解答涉及图形的最值问题时,要注意图形中自变量的取值范围及是否有实际意义,这是很多同学易犯错的地方.下册第二章复习┃知识归类数学·新课标(BS)7.二次函数与一元二次方程的关系对于二次函数y=ax2+bx+c,只要令y等于某个具体的数y0,就可以将函数转化成一元二次方程,这个方程的解是抛物线上纵坐标为y0的点的横坐标.特殊地,如果令y值为0,所得方程为ax2+bx+c=0,该方程的解是抛物线与x轴交点的横坐标.若方程无解,则说明抛物线与x轴无交点.下册第二章复习┃知识归类数学·新课标(BS)二次函数的图象和x轴的交点个数与一元二次方程的根的个数之间的关系,可以总结如下:设y=ax2+bx+c(a≠0),令y=0,得:ax2+bx+c=0.当b2-4ac>0时,方程有两个不等实数根,二次函数的图象与x轴有
个交点;当b2-4ac=0时,方程有两个相等实数根,二次函数的图象与x轴只有
个交点(即顶点);当b2-4ac<0时,方程没有实数根,二次函数的图象与x轴没有交点.两一►考点一二次函数定义的应用
下册第二章复习┃考点攻略┃考点攻略┃数学·新课标(BS)例1已知抛物线y=(m+1)xm2+m的开口向下,求m的值.[解析]本题容易考虑不全面,只考虑m+1<0,而忽略抛物线是二次函数的图象,自变量x的次数为2.由抛物线开口向下得m+1<0且m2+m=2,即m=-2.下册第二章复习┃考点攻略数学·新课标(BS)下册第二章复习┃考点攻略数学·新课标(BS)►考点二二次函数图象的平移例2如果将抛物线y=x2+bx+c沿直角平面坐标向左平移2个单位,再向上平移3个单位,得到抛物线y=x2-2x+1,则b=________,c=________.-66
下册第二章复习┃考点攻略数学·新课标(BS)下册第二章复习┃考点攻略数学·新课标(BS)下册第二章复习┃考点攻略数学·新课标(BS)B下册第二章复习┃考点攻略数学·新课标(BS)下册第二章复习┃考点攻略数学·新课标(BS)下册第二章复习┃考点攻略数学·新课标(BS)下册第二章复习┃考点攻略数学·新课标(BS)►考点四二次函数的图象和性质的应用例4已知抛物线y=ax2+bx+c(a<0)过A(-2,0),O(0,0),B(-3,y1),C(3,y2)四点,则y1与y2的大小关系是(
)A.y1>y2
B.y1=y2C.y1<y2
D.不能确定A
[解析]A结合图形,找到A、O、B、C四个点的大致位置,容易看出y1与y2的大小关系.下册第二章复习┃考点攻略数学·新课标(BS)下册第二章复习┃考点攻略数学·新课标(BS)►考点五求二次函数的表达式
例5已知二次函数y=-x2+bx+c的图象如图X2-3所示,它与x轴的一个交点坐标为(-1,0),与y轴的交点坐标为(0,3).(1)求出b,c的值,并写出此二次函数的表达式;(2)根据图象,写出函数值y为正数时,自变量x的取值范围.下册第二章复习┃考点攻略数学·新课标(BS)[解析]由于二次函数经过具体的两个点,把这两个点的坐标代入即可求出表达式,然后根据图象求出自变量x的取值范围.下册第二章复习┃考点攻略数学·新课标(BS)►考点六一元二次方程与二次函数的关系
下册第二章复习┃考点攻略数学·新课标(BS)B下册第二章复习┃考点攻略数学·新课标(BS)►考点七二次函数与图形面积例7
如图X2-4,苗圃的形状是直角梯形ABCD,AB∥DC,BC⊥CD.其中AB,AD是已有的墙,∠BAD=135°,另外两边BC与CD的长度之和为30米,如果梯形的高BC为变量x(米),梯形面积为y(米2),问:当x取何值时,梯形的面积最大?最大面积是多少?下册第二章复习┃考点攻略数学·新课标(BS)[解析]从题中已知梯形(除去一腰)的长和一个特殊角∠BAD=135°,这里可利用梯形面积公式等相关知识构造出函数解析式.图X2-4下册第二章复习┃考点攻略数学·新课标(BS)下册第二章复习┃考点攻略数学·新课标(BS)图X2-5下册第二章复习┃考点攻略数学·新课标(BS)►考点八二次函数与几何图形例8如图X2-6,在矩形ABCD中,AB=m(m是大于0的常数),BC=8,E为线段BC上的动点(不与B,C重合).连接DE,作EF⊥DE,EF与射线BA交于点F,设CE=x,BF=y.(1)求y关于x的函数关系式;(2)若m=8,求x为何值时,y的值最大,最大值是多少?下册第二章复习┃考点攻略数学·新课标(BS)[解析](1)设法证明y与x这两条线段所在的两个三角形相似,由比例式建立y关于x的函数关系式;(2)将m的值代入(1)中的函数关系式,配方化成顶点式后求最值;(3)逆向思考,当△DEF是等腰三角形,因为DE⊥EF,所以只能是EF=ED,再由(1)可得Rt△BFE≌Rt△CED,从而求出m的值.图X2-6下册第二章复习┃考点攻略数学·新课标(BS)下册第二章复习┃考点攻略数学·新课标(BS)下册第二章复习┃考点攻略数学·新课标(BS)下册第二章复习┃考点攻略数学·新课标(BS)►考点九二次函数与生活应用
例9利达经销店为某工厂代销一种建筑材料(这里的代销是指厂家先免费提供货源,待货物售出后再进行结算,未售出的由厂家负责处理).当每吨售价为260元时,月销售量为45吨.该经销店为提高经营利润,准备采取降价的方式进行促销.经市场调查发现:当每吨售价每下降10元时,月销售量就会增加吨.综合考虑各种因素,每售出一吨建筑材料共需支付厂家及其他费用100元.设每吨材料售价为x(元),该经销店的月利润为y(元).下册第二章复习┃考点攻略数学·新课标(BS)(1)当每吨售价是240元时,计算此时的月销售量;(2)求出y与x的函数关系式(不要求写出x的取值范围);(3)该经销店要获得最大月利润,售价应定为每吨多少元?(4)小静说:“当月利润最大时,月销售额也最大.”你认为对吗?请说明理由.下册第二章复习┃考点攻略数学·新课标(BS)下册第二章复习┃考点攻略数学·新课标(BS)下册第二章复习┃考点攻略数学·新课标(BS)下册第二章复习┃考点攻略数学·新课标(BS)下册第二章复习┃考点攻略数学·新课标(BS)下册第二章复习┃考点攻略数学·新课标(BS)►考点十二次函数与体育活动下册第二章复习┃考点攻略数学·新课标(BS)下册第二章复习┃考点攻略数学·新课标(BS)[解析]解决这个问题的关键是正确地进行数学建模,将运动员在空中的运动路线抽象为所给出的直角坐标系中的抛物线,用待定系数法求出表达式,再利用函数知识求解.下册第二章复习┃考点攻略数学·新课标(BS)下册第二章复习┃考点攻略数学·新课标(BS)下册第二章复习┃考点攻略数学·新课标(BS)下册第二章复习┃试卷讲练考查意图
二次函数是初中数学的重点、难点章节,本卷从认识、理解、运用三个层面考查二次函数,其中二次函数图象、性质的运用是重点和难点.知识与技能概念1,2,3,11,17性质5,6,9,21应用及综合7,8,10,12,13,14,15,19,20,22,23,24与一元二次方程结合4,21,16,18思想方法数形结合、分类讨论亮点8题考查与一次函数图象的“和平共处”,9题全面分析二次函数的性质,18题考查二次函数与方程、不等式的内在联系,24结合动点考查最值.数学·新课标(BS)下册阶段综合测试三(月考)下册阶段综合测试三(月考)┃试卷讲练考查意图综合考查直角三角形的边角关系和二次函数在本阶段的学习情况,其中二次函数占50%,直角三角形的边角关系占50%,重点在于二次函数的性质,难点在于二次函数的几何应用.知识与技能三角函数的概念和特殊角的三角函数值1,4,6,11解直角三角形7,10,12,14,16,18,19,23二次函数的图象与性质2,3,5,8,13,15,17二次函数与几何的结合题及实际应用9,20,21,22,24思想方法数形结合、分类讨论亮点
16题以立体图形为平台,考查对于三角函数的理解,24题结合实际考查二次函数的性质.下册第三章复习数学·新课标(BS)下册第三章复习┃知识归类┃知识归纳┃数学·新课标(BS)1.确定圆的要素圆心确定其位置,半径确定其大小.只有圆心没有半径,虽圆的位置固定,但大小不定,因而圆不确定;只有半径而没有圆心,虽圆的大小固定,但圆心的位置不定,因而圆也不确定;只有圆心和半径都固定,圆才被唯一确定.2.点与圆的位置关系(1)点与圆的位置关系有三种:点在圆外、点在圆上、点在圆内.下册第三章复习┃知识归类数学·新课标(BS)点在圆外,即这个点到圆心的距离
半径;点在圆上,即这个点到圆心的距离
半径;点在圆内,即这个点到圆心的距离
半径.判断点与圆的位置关系可由点到圆心的距离d与圆的半径r来比较得到.(2)设⊙O的半径是r,点P到圆心的距离为d,则有d<r⇒点P在圆内;d=r⇒点P在圆上;大于等于小于下册第三章复习┃知识归类数学·新课标(BS)d>r⇒点P在圆外.[点拨]
点与圆的位置关系可以转化为点到圆心的距离与半径之间的关系;反过来,也可以通过这种数量关系判断点与圆的位置关系.3.垂径定理(1)垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的
.[注意]①条件中的“弦”可以是直径;②结论中的“平分弧”指平分弦所对的劣弧、优弧.弧下册第三章复习┃知识归类数学·新课标(BS)(2)垂径定理的推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧.4.圆的旋转不变性(1)中心对称性:圆是中心对称图形,对称中心为
.(2)探究圆中角的一些性质定理1:在同圆或等圆中,如果圆心角相等,那么它们所对的弧相等,所对的弦相等.定理2:在同圆或等圆中,如果两个圆心角、两条弧、
中有一组量相等,那么它们所对应的其余各组量都分别相等.圆心两条弦下册第三章复习┃知识归类数学·新课标(BS)5.圆周角与圆心角的关系(1)圆周角的定义:顶点在圆上,且角的两边还与圆相交的角叫做圆周角.[注意]
圆周角有两个特征:角的顶点在圆上,两边在圆内的部分是圆的两条弦.(2)圆周角与圆心角的关系:一条弧所对的圆周角等于它所对的圆心角的
.(3)圆周角的性质性质:在同圆或等圆中,同弧或等弧所对的圆周角
.一半相等下册第三章复习┃知识归类数学·新课标(BS)直径所对的圆周角是
;90°的圆周角所对的弦
是
.[注意]
“同弧”指“在一个圆中的同一段弧”;“等弧”指“在同圆或等圆中相等的弧”;“同弧或等弧”不能改为“同弦或等弦”.6.确定圆的条件不在同一直线上的三个点确定一个圆.直角直径下册第三章复习┃知识归类数学·新课标(BS)7.三角形的外接圆三角形的三个顶点确定一个圆,这个圆叫做三角形的外接圆,外接圆的圆心是三角形三边垂直平分线的交点,叫做三角形的
.8.直线与圆的位置关系设r为圆的半径,d为圆心到直线的距离外心下册第三章复习┃知识归类数学·新课标(BS)位置关系相离
相切相交图形公共点个数
数量关系
012d>rd=r
d<r
下册第三章复习┃知识归类数学·新课标(BS)[易错点]将圆心到直线上某一点的距离看成是圆心到直线的距离.9.圆的切线的性质及判定性质:圆的切线垂直于经过切点的半径.判定:经过直径的一端,并且垂直于这条直径的直线是圆的切线.下册第三章复习┃知识归类数学·新课标(BS)10.三角形的内切圆和三角形三边都相切的圆可以作出一个,并且只能作出一个,这个圆叫做三角形的内切圆,内切圆的圆心是三角形角平分线的交点,叫做三角形的
.[注意]
对一个确定的三角形来说,其内切圆有且只有一个,其内心也有且只有一个:内心就是内切圆的圆心.11.切线长定理定理:从圆外一点可以引圆的两条________,它们的________相等,这一点和圆心的连线平分两条切线的________.内心切线切线长夹角下册第三章复习┃知识归类数学·新课标(BS)12.正多边形和圆各边相等,各角也相等的多边形叫做正多边形.把圆分成n(n≥3)等份:(1)依次连接各分点所得的多边形是这个圆的内接正n边形.(2)经过各分点作圆的________,以相邻切线的交点为顶点的多边形是这个圆的_________正n边形.切线外切下册第三章复习┃知识归类数学·新课标(BS)下册第三章复习┃知识归类数学·新课标(BS)14.圆锥的侧面积(1)圆锥的侧面展开图是一个
.(2)如果圆锥母线长为l,底面圆的半径为r,那么这个扇形的半径为
,扇形的弧长为
.(3)圆锥侧面积为
.[点拨]圆锥的侧面展开图的形状是扇形,它的半径等于圆锥的母线长,它的弧长是圆锥底面圆的周长.扇形l2πrπrl►考点一确定圆的条件
下册第三章复习┃考点攻略┃考点攻略┃数学·新课标(BS)例1如图X3-1,在5×5正方形网格中,一条圆弧经过A,B,C三点,那么这条圆弧所在圆的圆心是()A.点PB.点QC.点RD.点M
B
下册第三章复习┃考点攻略数学·新课标(BS)[解析]B圆心既在AB的中垂线上又在BC的中垂线上,由图可以看出圆心应该是点Q.►考点二垂径定理及其推论下册第三章复习┃考点攻略数学·新课标(BS)例2如图X3-2,AB是⊙O的弦,半径OC⊥AB于D点,且AB=6cm,OD=4cm,则DC的长为(
)A.5cmB.2.5cmC.2cmD.1cmD下册第三章复习┃考点攻略数学·新课标(BS)[解析]D连接AO,因为OC⊥AB,所以AD=BD=3cm,因为OD=4cm,在直角三角形ADO中,由勾股定理可以得到AO=5cm,所以OC=5cm,所以DC=1cm.下册第三章复习┃考点攻略数学·新课标(BS)►考点三圆心角与圆周角
下册第三章复习┃考点攻略数学·新课标(BS)例3
如图X3-3,点A,B,C在⊙O上,AB∥CO,∠B=22°,则∠A=________.[解析]由同弧所对的圆心角等于它所对的圆周角的2倍,得∠O=2∠B=44°,又因为AB∥CO,所以∠A=∠O=44°.44°下册第三章复习┃考点攻略数学·新课标(BS)►考点四与圆有关的开放性问题下册第三章复习┃考点攻略数学·新课标(BS)例4
如图X3-4,在边长为2的圆内接正方形ABCD中,AC是对角线,P为边CD的中点,延长AP交圆于点E.图X3-4下册第三章复习┃考点攻略数学·新课标(BS)(1)∠E=________度;(2)写出图中现有的一对不全等的相似三角形,并说明理由;(3)求弦DE的长.[解析](1)由题目可知∠E=∠ACD,因为四边形ABCD是正方形,所以∠ACD=45°,所以∠E=∠ACD=45°.(2)当对应角相等的时候,两个三角形相似,由圆的性质可知∠E=∠ACD,∠EDP=∠CAP,所以△ACP∽△DEP.45°下册第三章复习┃考点攻略数学·新课标(BS)下册第三章复习┃考点攻略数学·新课标(BS)解:(1)45(2)△ACP∽△DEP.理由:∵∠AED=∠ACD,∠APC=∠DPE,∴△ACP∽△DEP
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 医疗事故中心理因素对隐私保护的影响
- 2025年中国海水制氢行业市场发展趋势预测报告-智研咨询重磅发布
- 2025年中国城市服务行业市场运行态势及发展趋势预测报告-智研咨询发布
- 高效编译器设计-全面剖析
- 二零二五江苏夫妻离婚协议书模板
- 债权抵押担保合同二零二五年
- 区块链技术助力商业合同执行的可信度提升
- 熟食艺术装置展览行业深度调研及发展战略咨询报告
- 区块链在电子政务中的数字身份认证应用
- 智能恒温浴缸系统企业制定与实施新质生产力战略研究报告
- 北京工业大学《环境微生物学》2023-2024学年第一学期期末试卷
- 2024新版《药品管理法》培训课件
- 美术环保课件教学课件
- 四川省绵阳市游仙区富乐实验中学2023-2024学年七年级下学期期中考试数学试卷(含答案)
- 《课程理论-课程的基础、原理与问题》施良方
- 桌面推演应急演练方案脚本
- 外墙合同范本(2篇)
- 《中药种植技术》课件-第八章 药用植物病虫害及其防治
- JT∕T 1477-2023 系列2集装箱 角件
- 2024年湖南省岳阳市初中学业水平考试适应性测试化学试卷(二)
- 《陆上风电场工程设计概算编制规定及费用标准》(NB-T 31011-2019)
评论
0/150
提交评论