




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Bluetooth
&Wi-Fi原理和测试基础AgendaBluetooth/Wi-Fi概述Bluetooth/Wi-Fi基本原理
Bluetooth/Wi-Fi
RF测试基础Bluetooth应用Bluetooth应用con
t’Wireless
Link
Between
All
DevicesBluetooth
HistoryHarald
BluetoothA
FierceViking
King
in
the10th
CenturyDenmark,Who
is
Credited
with
UnitingDenmark
and
Norway
duringHisReign.Bluetooth
Unites
TechnologiesBluetooth发展1994年:爱立信公司的1994方案。希望为设备间的通讯创造一组规则(标准化协议),以解决用户间互不兼容的移动电子设备。1999年:
Ericsson,
IBM,In ,
Nokia,
Toshiba等业界龙头创立“特别 小组”(Special
Interest
Group,SIG)
,即”蓝牙技术”的前身,目标是开发一个成本低、效益高、可以在短距离范围内随意无线连接的蓝牙技术标准。初期未得到广泛应用,标准难以 ,对应电子设备较少,红外技术的竞争,制造成本过高。Bluetooth发展con
t’2005年后,发展迅猛,今年预计8亿片。正式列入IEEE标准,的外延互连需求,新功能如A2DP。十年磨一剑Advantages
of
Bluetooth用规格设备范围空前广泛易于使用无线Wifi和WLANWLAN:无线局域网。是Wi-Fi
制造商的商标。可做为产品的品牌认证,是一个创建于IEEE802.11标准的无线局域网络(WLAN)设备。基于两套系统的密切相关,也常有人把Wi-Fi当做
IEEE802.11标准的同意词术语。在这里基本不做区分。Wi-Fi应用Wi-Fi应用con
t’高速有线接入技术的补充:最后一百米蜂窝移动通信业务的补充:缓解3G网络压力粗略统计显示,去年10月以来,中国
启动20万台WLAN设备采购;中国移动开展了38万台WLAN设备招标;今年3月中国电信又开始了新一轮的802.11n设备招标。这让Wi-Fi设备市场成为电信领域继3G、IPTV等后又一争夺的热点。Why
Wireless
Networking?
-
Driving
ForceGlobal
Internet
ExplosionRapid
growth
for
mobile
dommunications
needsBroadbanddata
access
at
fast
data
ratesGrowing
usage
of
handheld
devices
(laptop,
palmtop
etc)Wi-Fi发展1997年:IEEE802.11发布期间厂家各自开发自己的标准。如苹果公司的AirPort。1999年:工业界成立Wi-Fi
,致力解决符合802.11标准的产品的生产和设备兼容性问题。中国:WAPI标准2003年5月,强制性中国2004年3月, 务卿、GB
15629.11/1102-2003批准发布长和贸易代表联名致信,要求中国放弃WAPI标准2009年4月,中国工业和信息化部召集 厂商开会,宣布今后中国国内所有2G和3G
都必须使用WAPI技术Wi-Fi发展con
t’802.11,1997年,原始标准(2Mbit/s,2.4GHz频道)。802.11a,1999年,物理层补充(54Mbit/s,5GHz频道)。802.11b,1999年,物理层补充(11Mbit/s,2.4GHz频道)。802.11c,符合802.1D的
接入控制层(MAC)桥接(MAC
Layer
Bridging)。802.11d,根据各国无线电规定做的调整。
802.11e,对服务等级(Quality
ofService,QoS)的支持。802.11f,
的互连性(Interoperability)。
802.11g,物理层补充(54Mbit/s,2.4GHz频道)。802.11h,无线覆盖半径的调整,室内(indoor)和室外(outdoor)信道(5GHz频段)。802.11i,安全和鉴权(Authentification)方面的补充。802.11n,导入多重输入输出(MIMO)和40Mbit信道宽度(HT40)技术,基本上是802.11a/g的延伸版。Advantages
of
Wireless
LANMobilityScalabilitySimpler
and
faster
installationInstallation
flexibilityReduced
cost
of
ownershipIEEE
802.xx–
A
family
of
Wireless
StandardsAgendaBluetooth/Wi-Fi概述Bluetooth/Wi-Fi基本原理
Bluetooth/Wi-Fi
RF测试基础
PSA/N4010A简介为什么测试工程师需要了解原理?无线测试工程师需要掌握的知识:仪器操作方法熟悉编程语言无线通信各种制式基本原理RF测试基本原理仪表原理编写自动测试 发现问题解决问题
改进测试流程
搭建测试环境
撰写测试指导书ISM频段ISM频段:即工业,科学和医用频段。一般来说世界各国均保留了一些无线频段,以用于工业,科学研究,和微波医疗方面的应用。应用这些频段无需
证,只需要遵守一定的 ,并且不要对其它频段造成干扰即可。2.4GHz为各国共同的ISM频段。因此WLAN(IEEE
802.11b/IEEE
802.11g),Bluetooth,Zigbee等无线网络,均可工作在2.4GHz频段上。Bluetooth基本原理Rev
1.1
and
1.2
RF基本介绍
EDR
RF基本介绍组网方式工作状态Bluetooth
Summary
(rev
1.1
and
1.2)Operating
Frequency:
ISM
band
2.402
-
2.480
GHzNumber
of
carriers:Frequency
Hop79
carriers
at
1
MHzspacing: nominally
1600
hops/s,
3200
duringpaging/inquiry0.5
BT
GFSK
modulation1Mb/sNominally <
0dBm,
0dBm,
+20dBmModulation:Raw
Symbol
rate:3
PowerClasses:Reference
sensitivity:-70dBm,
but
some
design
ing-90dBmRADIO
PARAMETERS
(1)Frequency
HopISM
band
at
2.45GHz,
2400
-
2483.5MHz2402
+
kMHz,
k
=
0,
…,
78Device
specific
hop
sequenceNominal
rate
1600
hops/sModulationBinaryFSKGaussian
filteringBT
=
0.5;
0.28<<0.35-20dB
bandwidth
of
1MHzRADIO
PARAMETERS
(2)Transmitter
powerNominal
0
dBmUp
to
20
dB
provided
power
controlReceiver
sensitivity-70
dBm
@
0.1%
BERFrequency-Hop SpreadSpectrum扩频技术:跳频的载频受一个伪随机码的控制,在其工作带宽范围内,其频率端, 的频率器按PN码的随机规律不断改变频率。在接收器受伪随机码的控制,并保持与发射端的变化规律一致。:二 军方
。应用:GSMBluetooth作用:避免对其他系统的干扰,抗多径Hop in
more
Detail5
different
hop sequences,
4
of
which
are
short
(32hops)and
used
for
special
purposes
e.g.
connectionestablishmentMain
sequence
called
“Connected
Mode”
sequence134,217,728
hops
(2^27)1600
hops/sec
over
79channelsTakes
23
hours,
18mins
&
6
sec
to
complete!Why
have
it?
Aids
signal
reliability
in
a
potentially
crowdedbandFREQUENCY
HOP2.4022.480freqtimeslavemasterBinaryFSK2FSK信号是符号“1”对应于载频f1,而符号“0”对应于载频f2数字调频可用模拟调频法—利用脉冲序列对一个载波进行调频2FSK键控法—利用脉冲序列控制选通两个不同频率的独立信号源FSK信号的解调方法包括鉴频法、相干检测法、包络检波法、过零检测法、差分检测法等2FSK现在多用I/Q的方法实现调制与解调Waveform
Characteristics1
1
10
0
0+
fCenter
Freq.-
f1
1 1
1
10
00
0
00 0
0
0 0
0
0 0
01
1
11
11
11
1
1Max
deviation+/-
157.5
KHz1
Million
bits/secModulation
index
=
0.28
-
0.35‘1010’
deviationapprox.
88%
of
max
due
to
0.5
BT
FilterTX
SpectrumMask00
.
20
.
40
.
60
.
81
.
21
.
41
.
61
.
82-60-50-40-30-20-1001fr
eq
(M
Hz)power
s
pe
ctrum
(d
B)TX
Power
Control0
dBm
nominalpower-30
-+20
dBm
optional
rangePower
controlrequired
above0
dBmRSSI-based
power
regulationCoarse
monotonous
stepsLinkBudgetkTBNoise
floorTXpowerRX
power
@
10cmRX
power
@
10m0dBm-20-70-91-114C/I
=
21
dBNF
=
23dBTime
Division
DuplexTx
Timeslot
period
=
625usRx
Timeslot
period
=
625
usPay
loadHeaderAccessCodeBit
p0C Ch
63hannelCh
31Ch
50Ch
14Critical
intervals
during
whichVCO
must
have
settledSettling
timePay
loadHeaderAccessCodeSettling
timePowerBit
p0FH/TDDCHANNEL625
sttmasterslavef(2k)f(2k+1)f(2k+2)MULTI-SLOT
PACKETS625
sf(k)f(k+1)f(k+2)f(k+3)f(k+4)f(k+5)f(k)f(k+3)f(k+4)f(k+5)f(k)f(k+5)Bluetooth
EDR
SummaryEDR
is
an
enhancement
to
the
Bluetooth1.2
standardIt
is
backwards
compatible
with
earlierBluetoothstandardsIt
uses
PSK
modulation
schemeto
achieve2or
3Mb/sdata
rate–
p/4
DQPSK
for
2Mb/s(each
point
represents
2bitsof
data)–
8DPSK
for
3Mb/s
(each
point
represents
3
bits
ofdata)HowBluetooth®
changes
for
EDRTransmission
combines
the
originalGFSK
header
with
aDifferential
PSK
payloadThe
Peak
Data
Rate
increases
from
1Mbpsto2Mbps(mandatory)
or
3Mbps
(optional)using
new
modulationschemes:2MBit/s
–
p/4
DQPSK3MBits/s
–
8DPSKSpectral
characteristicsof
transmissionsare
virtually
unchangedSupport
for
both
modulationschemesis
mandatory
for
all
EDRcapable
products差分调制方式/4DQPSKCREATING
A
PICONETslave
Bslave
Cmaster
Aslave
DOPERATIONAL
STATESmasteractive
slaveparked
slavestandbyPhysical
Channel
DefinitionCountry
Frequency
RangeRFChannelsEU&USA2400
-2483.5MHzf
=
2402
+
kMHzk=
0,...,78Japan2471
-2497MHzf
=
2473
+
kMHzk=
0,...,22Spain2445
-2475MHzf
=
2449
+kMHzk=
0,...,22France2446.5
-
2483.5MHzf
=
2454
+kMHzk=
0,...,22PHYSICAL
CHANNELmaster
BD_ADDR
hop
sequencemaster
CLOCK
phaseslave
2slave
1masterslave
4slave
3PHYSICAL
LINK
TYPESSynchronousConnection-Oriented(SCO)
Linkcircuit
switchingsymmetric,
synchronousservicesslot
reservation
at
fixedintervalsAsynchronous
Connection-Less
(ACL)Linkpacket
switching(a)symmetric,
asynchronousservicespolling
access
schemeMIXED
LINKEXAMPLEERRORCORRECTIONForward-Error
Correction
(FEC)1/3
rate:
bit-repeat
code2/3
rate:
(15,10)
shortened
Hamming
codeAutomatic
Retransmission
Query
(ARQ)1-bit
fast
ACK/NAK1-bit
sequence
numberheader
piggy-backingAUTOMATIC
RETRANSMISSIONOPERATIONAL
STATESstand-by,
scanpage,inquiryconnectionactiveholdsniffparkStatediagramInquiry
and
PageInquiryDiscover
Bluetooth
device
in
rangeAcquire
device
address
and
clockPageEstablish
connection
between
master
and
slaveThe
device
that
initiates
page emasterInquiring
forRadiosRadio
A
Wants
to
find
other
radios
in
the
areaADCBIDbIDaIDcIDdInquiring
forRadiosRadio
A
issues
an
Inquire
(pages
with
the
Inquire
ID)Radios
B,
C
and
D
are ng
an
Inquire
ScanADCBIDbIDaIDcIDdINQINQInquireINQInquiring
forRadiosRadio
B
recognizes
Inquire
and
responds
with
an
FHSpacket–
Has
slave’s
Device
ID
and
ClockADCBIDbIDaIDcIDdIDbContention
SolvingRadio
A
Issues
an
Inquire
(again)Radios
C
and
D
respond
with
FHS
packetsAs
radios
C
&
D
respond
simultaneously
packets
are
corrupted
andRadio
A
won’t
respondEach
radio
waits
a
random
number
of
slots
and
listensIDbIDaIDcIDdIDbIDdAIDcDCBContention
SolvingRadio
C
waits
randomslotsRadio
A
Issues
an
Inquire
(again)Radios
C
respond
with
FHS
packetsIDbIDaIDcIDdIDbAIDcDCBContention
SolvingRadio
D
waits
random
slotsRadio
A
Issues
an
Inquire(again)Radios
D
respond
with
FHSpacketsIDbIDaIDcIDdIDdADCBIDbIDcInquiring
forRadiosRadio
A
now
has
information
of
all
radios
within
rangeIDbIDaIDcIDdADCBIDbIDcIDdInquireSummaryPaging
radio
Issues
page
packet
with
Inquire
IDAny
radio ng
an
Inquire
scan
will
respond
with
an
FHSpacketFHS
packet
gives
Inquiring
radio
information
to
pageDevice
IDClockIf
there
is
a
collision
then
radios
wait
a
random
number
ofslots
before
responding
to
the
page
inquireAfter
process
is
done,
Inquiring
radio
has
Device
IDs
andClocks
of
all
radios
in
rangeMaster
Paging
a
SlavePaging
assumes
master
has
slavesDevice
ID
and
anidea
of
its
ClockA
pages
C
with
C’s
Device
IDACIDaIDcIDcIDcPageMaster
Paging
a
SlaveC
Repliesto
A
with
C’s
Device
IDACIDaIDcIDcIDcMaster
Paging
a
SlaveA
sends
C
its
Device
ID
and
Clock
(FHS
packet)ACIDaIDcIDcIDaMaster
Paging
a
SlaveA
sends
C
poll
packet
to
confirm
connectionC
responds
any
packet
using
channel
hopfrequencyACIDaIDcIDcIDaMaster
Paging
a
SlaveA
connects
as
a
master
toCACIDaIDcIDcIDaConnection
States,发送和接收分组包,Active:主从节点都分别在信道通过并彼此保持同步;Sniff:在这个模式下,从节点可以暂时不支持ACL分组,也就是ACL链路进入低能源sleep模式,空出资源,使得象寻呼、扫描等活动、信道仍可用;Hold:保持状态Park:当从节点不必介入微微网信道,但仍想与信道维持同步,它能进入park(休眠)模式,此时具有很少的活动而处于低耗模式。slave
2slave
3slave
1master
Bslave
4slave
5SCATTERNET
(1)master
Aslave
1slave
2slave
3slave
4
/
master
Bslave
6slave
5SCATTERNET
(2)master
AWi-Fi基本原理DSSSOFDMAntennaDiversity802.11a,b,g,n概述Physical
Layer–SpreadSpectrumTechnologySpread
Spectrum
is
originated
from
militaryapplicationSpread
Spectrum
is
a
modulation
techniquethatusesmorebandwidth
than
that
needed
fortransmissionTo
achieve
a
larger
bandwidth,
Spread
Spectrum
uses
a
code
inthe
transmitterthatmustbe
known
bythereceiverThe
two
Spread
Spectrum
techniques
used
in
Wireless
LAN
are:Direct
Sequence
SpreadSpectrum
(DSSS)OrthogonalFrequencyDivision
Multiplexing
(OFDM)Advantages
of
Spread
SpectrumTechnologyOvercrowded
Frequency
Spectrum!
–
Why
do
we
stillspread
the
signal?Low
power
spectral
densityProtection
against
multipath
interferenceInterference
rejectionBetter
security
and
privacyFacilitates
the
use
of
Code
Division
Multiple
AccessDirect
Sequence
Spread
SpectrumDirect
sequencespreadspectrumsignal
is
generatedby
mixing
the
narrowband
userdatawith
awell-definedwidebandsignal
(pseudo-randomsequence).Recovering
the
narrowbanduser
data
is
achievedbymixing
the
receivedsignal
withan
identical,accura ytimedpseudo-random
sequence.FreqDirect
Sequence
Spread
SpectrumPower
SpectralDensityDirect
sequencespread
signalNarrowband
userdataDirect
Sequence
Spread
SpectrumData
SignalCode
SignalData
Signal
XCode
Signal-11-11-11Orthogonal
FrequencyDivision
MultiplexingOrthogonal
SignalsTDMACDMA(Walsh
Codes)OFDMAdvantages
ofOFDMIncreased
efficiency
because
carrier
spacing
isreduced
(orthogonal
carriers
overlap)Equalization
simplified,
or
eliminatedMoreresistanttofadingData
transfer
rate
can
be
scaled
to
conditionsSingle
FrequencyNetworks
are
possible(broadcastapplication)Now
possible
because
of
advances
in
signalprocessinghorsepowerDisadvantages
of
OFDMHigher
Peak-to-averageMore
sensitiveto
phase
noise,
timing
and
frequency
offsetsGreatercomplexityMore
expensive
transmitters
andreceiversEfficiency
gains
reduced
by
requirement
for
guard
intervalAntenna
Diversity
ConceptPhysical
layer
receive
operation
uses
antennadiversityWhy
Antenna
Diversity?To
combat
signal
degradation
due
to
multipath
fading,path
loss,
rain,
heat
etc.Antenna
Diversity
ConceptWhat
is
Antenna
Diversity?Radio
receiver
has
two
or
more
antennasThe
antennas
(a
few
cm
apart)
will
receive
verydifferent
signal
qualityReceiver
chooses
the
best
antenna
by
comparingthesignal
strengthCan
avoid
most
of
the
fade
out
periods
(multipathfadingcondition)IEEE802.11
ArchitectureTerminologyStation:
Any
devicethatcontains
a
MAC
and
PhysicalLayerthat
conformstoIEEE802.11
standardsAccess
Point:
Any
entity
thathas
station
functionality
anda
a
bridgethatconnectsa
wireless
client
device
to
thewired
networkSummary
of
Wireless
LANsStandardsStandardModulationData
ratesCommentsIEEE802.112-GFSK
or
4-GFSK
FHSSBPSK
or
QPSK
DSSS1
or
2
MbpsMultiple
PHYincludingInfra
redIEEE802.11bCCK5.5
or
11
MbpsCorporate
favoriteIEEE802.11g64
OFDM
+
BPSK,QPSK,16QAM,
64QAM,
CCK6,
9,12,
18,
24,36,
48,
54
MbpsIn
development,
48
and54
Mbps
will
need
newRFdesignIEEE802.11a64
OFDM
+
BPSK,QPSK,16QAM,
64QAM6,
9,12,
18,
24,36,
48,
54
MbpsETSI
TGj/IEEE
working
oncoexistence
strategiesHIPANLAN
1GMSK,
FSK23.5
Mbps
or
1.5MbpsEurope
only,
no
product,non-existence
nowHIPANLAN
264
OFDM
+
BPSK,QPSK,16QAM,
64QAM6,
9,12,
18,
24,36,
48,
54
MbpsETSI
TGj/IEEE
workingoncoexistence
strategies802.11b
标准概述支持1,2,5.5,11Mbps数据率2.4GHz
ISM频段支持调频模式(可选)最大输出功率100mW使用Barker,CCK,PBCC等编码方式使用BPSK,
DQPSK等调制方式802.11g
标准概述802.11b的继任者,在802.11b所使用的相同的2.4GHz频段上,使用a,b共有的调制方式提供了最高54Mbps的数据传输率802.11a
标准概述支持6,9,12,
18,24,36,48,54Mbps数据率,其中,6–
24Mbps是必须支持的,其余为可选5.150–5.825GHz
频段,信道间隔20MHz占用带宽18MHz最大输出功率40–800mW使用OFDM+BPSK,
QPSK,
16QAM,
64QAM等调制方式The
new
IEEE
802.11n
standard802.11n
Multiple-In,
Multiple
Out
(MIMO)Tx1Tx2Rx1Rx2x1x2h11h12h21h22x1x2x1x2H-1(DSP)Therealchannel(complicated)Needed
to
solve
the
equations
-Knowledge
ofchannelKnowledge
of
the
source
ofreceived
signalSignalindependenceSimilar
signalpowersChannel
Model
(oneOFDM
sub-carrierduringone
packet)
–
sumofsignals
received
bytransmitterThe
simultaneous
use
of
one
channel
by
multiplesignalstoincrease
data
rate
and/or
signalintegrityAgendaBluetooth/Wi-Fi概述Bluetooth/Wi-Fi基本原理
Bluetooth/Wi-Fi
RF测试基础
PSA/N4010A简介Bluetooth
RF测试基础测试要求
发射机测试测试AgilentSolutionBluetooth
Radio
LinkRequirementsTest
ConceptGoalTo
ensure
Bluetooth
devices
can
get
in
contact
witheach
otherTo
ensure
the
Radio
Link
performanceTest
ModesTransmitter
Test
ModeLoop-back
Test
ModeReply
PacketDecode
PacketPerform
ARQRe-coded
PacketDUTTest
PacketTesterCompare?GenerateTest
PacketTest
Mode
-
Radio
Loop-backOptions
(Control
using
LMP
commands):SCO
/
ACL
packetsSingle
Frequencies
/Frequency
HopPowerlevelTransmitterOutput
PowerTXOutputSpectrumInitial
Carrier
FrequencyToleranceTransceiverOut-of-Band
spuriousemissionsReceiverSensitivityC/I
performanceOut-of-Band
blockingLower
Base
bandTX/RX
TimingFrequencyHopCoding/DecodingErrorcorrectionBluetooth
Radio
Link
RequirementsExample
of
Test
CasesOutputPowerEUT
in
loopback
or
TX
modeHop
onPower
control
to
maxPN9
as
payloadMeasured
at
lowest
operatingfrequencyZero
span
and
peak
detectionTest
limit:Class
1
PAV>0dBm(<20dBm)Class
2–6dBm<PAV<+4dBmClass
3
PAV<0dBmOther
Power
Related
TestPower
DensityImportant
for
ISM
band
operationPower
Density
<
100
mW
(20dBm)
per
100
kHz
EIRPPower
ControlApplicable
for
EUT
supporting
power
controlStep
size
of
the
power
control:
2dB
step
size
.
8
dBFor
power
class
1
equipment:At
minimum
power
step:
PAV
<
4dBmOutput
Spectrum:
20dBBandwidthEUT
in
loopback
orTXmodeHop
offPower
control
to
maxPN9as
payloadMeasured
at
lowestoperating
frequency10KHz
RBWTest
limit:f
=
|fH
-
fL|
1.0
MHzDeviation
of
11110000 versus
10101010157.5
KHz
nominal
deviation0.5BT
Gaussian
filter
sets
deviation
ratio
-
MUST
BE
>=
80%Modulation
CharacteristicsInitial
Carrier
Frequency
Tolerance
(ICFT)Known
as
“InitialCarrier
FrequencyTolerance”
or
ICFTMeasures
the
actualCenter
Frequency
ofthe
carrier
under
test(pre-amble
part,<75Khz)Timing
referenced
top0
( data
bit)AveragingFrequency
DriftMeasures
centerfrequency
of
burst
atthe
start,
thencompares
it
to
thecenter
frequencythroughout
the
burst
to25
kHz
Drift
limit
forone
slot40
KHz
Drift
limit
for
3and
5
slot20KHz
Drift
Rate10
bit
payload
driftReceiver
SensitivityVerifies
the
ability
to
receive
low
level
and
non-ideal
signalsTestsource
performs
the
non-ideal
transmitter
roleSingle
and
Multi-Slot
Packe sitivity
Tests:EUT
in
loopback
test
mode
and
hop
offTest
source
sends
DH1
with
PRBS9
payload
to
the
EUT
in
single
slot
testTest
source
sends
DH5
or
DH3
with
PRBS9
payload
to
the
EUT
in
multi-slot
testVarious
signal
impairments
are
implementedTest
performed
at
lowest,
middle,
and
highest
operating
frequencyTest
Limit:-70dBm
input
signal
levelBER
<0.1%(minimum
number
of
samples,
1
600
000
returned
payload
bits)Set
ofParametersCarrier
Freq.offsetModulationindexSymbol
timingerror175
kHz0.28-
20
ppm214
kHz0.30-
20
ppm3-
2
kHz0.29+
20
ppm41
kHz0.32+
20
ppm539
kHz0.33+
20
ppm60
kHz0.34-
20
ppm7-42
kHz0.29-
20
ppm874
kHz0.31-
20
ppm9-19
kHz0.28-
20
ppm10-75
kHz0.35+
20
ppmDirty
Transmitter
SimulationCarrier
to
Interference
PerformanceVerifies
receiver
performance
in
the
presence
ofCo-/adjacent
channelinterference.Test
source
provides
the
wanted
signal
to
the
EUTTestsource
sends
DH1
packets
with
PRBS9
payload
to
the
EUTPower
levels
are
detailed
in
the
RF
test
specificationTest
performed
at
lowest,
middle,
and
highest
operating
frequencyAdditional
test
source
provides
the
interference
signal
to
the
EUTBluetooth
modulated
signalFrequency
and
power
levels
are
detailed
in
the
RF
test
specificationThe
BER
shall
be
0.1%Exceptions
are
detailed
in
the
RF
test
specificationOut-of-Band
Blocking
PerformanceVerifies
receiver
performance
in
the
presence
of
interferenceTest
source
provides
the
wanted
signal
to
the
EUTTestsource
sends
DH1
packets
with
PRBS9
payload
to
the
EUTPower
levels
are
detailed
in
the
RF
test
specificationTest
performed
at
lowest,
middle,
and
highest
operating
frequencyCW
source
provides
the
interference
signal
to
the
EUTContinuous
Wave30MHz
to
12.75GHz
in
1MHz
incrementsPower
levels
are
detailed
in
the
RF
test
specificationThe
BER
shall
be
0.1%Exceptions
are
detailed
in
the
RF
test
specificationIntermodulation
PerformanceVerifies
receiver
intermodulation
characteristicsTest
requires
three
signal
generators:Test
source
provides
the
wanted
signal
at
frequency
f0RF
source
provides
a
static
sine
wave
signal
at
f1Additional
test
source
provides
a
Bluetooth-modulated
signal
at
f2Such
that
f0
=
2f1-f2
and
|f2-f1|
=
n*
1MHz,
where
n
can
be
3,
4,
or
5Power
levels
for
signals
are
detailed
in
the
test
procedureTest
performed
at
lowest,
middle,
and
highest
operating
frequencyThe
BER
shall
be
0.1%
under
these
conditionsumInputVerifLiees
vreecleiver
performance
when
the
input
signal
is
set
at
theum
power
levelTest
source
performs
the
Bluetooth
transmitter
roleTestsource
continuously
sends
DH1
packets
with
PRBS9
payload
to
the
EUTPower
level
is
set
to
–20dBm
at
the
receiver
input
of
the
EUTTest
performed
at
lowest,
middle,
and
highest
operating
frequencyThe
BER
shall
be
0.1%
at
-20dBmWi-FiRF测试基础发射机测试测试AgilentSolutionTransmitterMeasurementPower
MeasurementSpectrum
MeasurementModulation
Characteristics
Measurement18.4.7.1
Transmit
power
levels
(802.11b)um
output
powerGeographic
Location1000mWUSA100mW(EIRP)Europ10mW/MHzJapanTable
115Transmit
power
levelsNote:Measuring
framed
RF
signals
requires
the
use
of
a
trigger
signal.17.3.9.1
Transmit
power
levels
(802.11a)Frequency
band
(GHz)um
output
powerwith
up
to
6
dBi
antenna
gain(mW)5.15–5.2540
(2.5
mW/MHz)5.25–5.35200
(12.5
mW/MHz)5.725–5.825800
(50
mW/MHz)Transmit
power
levels
for
the
United
StatesNote:Measuring
framed
RF
signals
requires
the
use
of
a
trigger
signal.18.4.7.2
Transmit
power
level
control
(802.11b)Power
control
shall
be
providedfor
transmitted
power
greaterthan
100
mW.A um
of
four
power
levels
may
be
provided.As
a
minimum,
a
radiocapableof
transmissiongreater
than
100mW
shall
be
capableof
switching
power
back
to
100
mW
orless.Test
method
same
with
power
measurementSignal yzer
should
haveenough
wide
band
tocomple y
capture
the
signal.Spectrummeasurement
method
:Channel
PowerTime
measurementmethod
:
Envelop
DetectionCCDFis
the
most
usefulgraph.Using
SignalPoweryzerto
MeasureWLAN18.4.7.6
Transmit
power-on
and
power-down
ramp(802.11b)umpowerumThe
transmitpower-on
rampfor
10%
to90%
ofshall
be
no
greater
than
2
µs.The
transmitpower-on
rampis
shown
in
Figure
146.The
transmitpower-down
rampfor90%
to10%power
shallbe
no
greater
than
2
µs.The
transmit
power-down
ramp
is
shownin
Figure
147.18.4.7.6
Transmit
power-on
and
power-down
ramp(802.11b)18.4.7.6
Transmit
power-on
and
power-down
ramp(802.11b)18.4.7.3
Transmit
spectrum
mask
(802.11b)The
transmitted
spectral
products
shall
be
less
than
–30
dBr(dBrelative
to
the
sin(x)/x
peak)
forfc
–
22
MHz
<
f
<
fc
–11
MHz;
andfc
+
11
MHz
<
f
<
fc
+
22
MHz;And
shallbe
less
than
–50dBr
forf
<
fc
–
22
MHz;
and
f
>
fc
+
22MHz.Where
fc
is
the
channel
center
frequency.The
measurementsshall
be
madeusing
a
100
kHz
resolutionbandwidth
and
a
100
kHz
bandwidth.Using
SA
Measure
IEEE
802.11b
SpectrumMask17.3.9.2
Transmit
spectrum
mask
(802.11a)The
transmittedspectrumshallhave
a
0
dBr
(dB
relative
totheum
spectral
density
of
the
signal)bandwidth
notexceeding
18MHz–20
dBr
at
11
MHz
frequencyoffset–28
dBr
at
20
MHz
frequency
offset–40
dBr
at
30
MHz
frequency
offset
and
above.
The
transmittedspectraldensityof
the
transmittedsignalThe
measurementsshall
be
madeusing
a
100
kHz
resolutionbandwidth
and
a
30
kHz
bandwidth.17.3.9.2
Transmit
spectrum
maskUsing
SA
Measure
IEEE
802.11a
SignalSpectrum17.3.9.3
Transmission
spurious(802.11a)Spurious
transmissions
from
compliantdevices
shall
conform
tonationalregulations.18.4.7.4
Transmit
center
frequency
tolerance(802.11b)The
transmitted
center
frequencytolerance(frequencyerror) shall
be
±25
ppmum.17.3.9.4
Transmit
center
frequency
tolerance(802.11a)The
transmitt
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年中国抗菌产品行业市场全景分析及前景机遇研判报告
- 智能网联汽车技术概论(含实训任务书)教案全套 第1-7章 概述、智能网联汽车技术原理-智能网联汽车软件系统
- 2025年中国睫毛延伸行业市场全景分析及前景机遇研判报告
- 2025年中国家用椭圆机行业市场全景分析及前景机遇研判报告
- 中国中药饮片行业发展趋势预测及投资规划研究报告
- 2023-2028年中国红木木材行业市场深度分析及未来发展趋势预测报告
- 2025年中国家用电烤箱市场供需现状及投资战略研究报告
- 2025年 西藏行测考试笔试试题附答案
- 锦纶行业深度研究分析报告(2024-2030版)
- 中国装修施工服务行业市场深度研究及投资战略规划报告
- 物业小饭桌管理制度
- 2025年湖南省普通高中学业水平考试合格性考试模拟试题(长郡版高一生物)(原卷版)
- 2025春国家开放大学《思想道德与法治》终考大作业答案
- 2025年广东省广州市白云区中考语文二模试卷
- 【英语(新高考Ⅰ卷)】2025年普通高等学校招生全国统一考试
- 2025年天津市河西区中考二模数学试题(含部分答案)
- 医院培训课件:《药品不良反应报告和监测工作简介》
- 医师职业素养课件
- 电网工程设备材料信息参考价2025年第一季度
- 2024年安徽省初中学业水平考试生物试题含答案
- Python试题库(附参考答案)
评论
0/150
提交评论