




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1.差分走线
差分信号(DifferentialSignal)在高速电路设计中的应用越来越广泛,电路中最关键的信号往往都要采用差分结构设计,什么另它这么倍受青睐呢?在PCB设计中又如何能保证其良好的性能呢?带着这两个问题,我们进行下一部分的讨论。何为差分信号?通俗地说,就是驱动端发送两个等值、反相的信号,接收端通过比较这两个电压的差值来判断逻辑状态“0”还是“1”。而承载差分信号的那一对走线就称为差分走线。差分线怎么布才是严格的等长?我怎么样测试两相的长度是等长度呢?还是我大致让他们平行走线,只是尽量可能的等长,而不是很精确的等长?既然延迟差允许1/4的时钟误差是不是其长度也可以满足两相的长度差存在1/4的误差或者是更少的误差(1/4的误差太大了,平行着走线,怎么走也差不了那么多哦呵呵:))
差分信号和普通的单端信号走线相比,最明显的优势体现在以下三个方面:
a.抗干扰能力强,因为两根差分走线之间的耦合很好,当外界存在噪声干扰时,几乎是同时被耦合到两条线上,而接收端关心的只是两信号的差值,所以外界的共模噪声可以被完全抵消。
b.能有效抑制EMI,同样的道理,由于两根信号的极性相反,他们对外辐射的电磁场可以相互抵消,耦合的越紧密,泄放到外界的电磁能量越少。
c.时序定位精确,由于差分信号的开关变化是位于两个信号的交点,而不像普通单端信号依靠高低两个阈值电压判断,因而受工艺,温度的影响小,能降低时序上的误差,同时也更适合于低幅度信号的电路。目前流行的LVDS(lowvoltagedifferentialsignaling)就是指这种小振幅差分信号技术。
对于PCB工程师来说,最关注的还是如何确保在实际走线中能完全发挥差分走线的这些优势。也许只要是接触过Layout的人都会了解差分走线的一般要求,那就是“等长、等距”。等长是为了保证两个差分信号时刻保持相反极性,减少共模分量;等距则主要是为了保证两者差分阻抗一致,减少反射。“尽量靠近原则”有时候也是差分走线的要求之一。但所有这些规则都不是用来生搬硬套的,不少工程师似乎还不了解高速差分信号传输的本质。下面重点讨论一下PCB差分信号设计中几个常见的误区。误区一:认为差分信号不需要地平面作为回流路径,或者认为差分走线彼此为对方提供回流途径。造成这种误区的原因是被表面现象迷惑,或者对高速信号传输的机理认识还不够深入。
误区二:认为保持等间距比匹配线长更重要。在实际的PCB布线中,往往不能同时满足差分设计的要求。由于管脚分布,过孔,以及走线空间等因素存在,必须通过适当的绕线才能达到线长匹配的目的,但带来的结果必然是差分对的部分区域无法平行,这时候我们该如何取舍呢?
2.蛇形线
蛇形线是Layout中经常使用的一类走线方式。其主要目的就是为了调节延时,满足系统时序设计要求。设计者首先要有这样的认识:蛇形线会破坏信号质量,改变传输延时,布线时要尽量避免使用。但实际设计中,为了保证信号有足够的保持时间,或者减小同组信号之间的时间偏移,往往不得不故意进行绕线。很明显,信号在蛇形走线上传输时,相互平行的线段之间会发生耦合,耦合程度也越大。可能会导致传输延时减小,以及由于串扰而大大降低信号的质量。下面是给Layout工程师处理蛇形线时的几点建议:1.尽量增加平行线段的距离(S),至少大于3H,H指信号走线到参考平面的距离。通俗的说就是绕大弯走线,只要S足够大,就几乎能完全避免相互的耦合效应。2.减小耦合长度Lp,当两倍的Lp延时接近或超过信号上升时间时,产生的串扰将达到饱和。3.带状线(Strip-Line)或者埋式微带线(EmbeddedMicro-strip)的蛇形线引起的信号传输延时小于微带走线(Micro-strip)。理论上,带状线不会因为差模串扰影响传输速率。4.高速以及对时序要求较为严格的信号线,尽量不要走蛇形线,尤其不能在小范围内蜿蜒走线。5.可以经常采用任意角度的蛇形走线,如图1-8-20中的C结构,能有效的减少相互间的耦合。6.高速PCB设计中,蛇形线没有所谓滤波或抗干扰的能力,只可能降低信号质量,所以只作时序匹配之用而无其它目的。7.有时可以考虑螺旋走线的方式进行绕线,仿真表明,其效果要优于正常的蛇形走线。近来我发现树莓派的芯片周围有各种各样的蛇形走线,感觉好奇怪,特意请教了高手分析一下。大家请指教!
我(我代表作者)认为主要牵涉到两个方便的问题:
1.差分线,就是题主发的图片中电路板上特别接近的两根线,总是一对一对的出现。
2.蛇形走线,就是图中弯弯曲曲的电路线。
不管是差分走线还是蛇形走线其实都是为了保证电路设计中很重要的一个东西——信号完整性。什么是信号完整性呢?下面是维基百科给的一个解释:
信号完整性(Signalintegrity,SI)是对于电子信号质量的一系列度量标准。在数字电路中,一串二进制的信号流是通过电压(或电流)的波形来表示。然而,自然界的信号实际上都是模拟的,而非数字的,所有的信号都受噪音、扭曲和损失影响。在短距离、低比特率的情况里,一个简单的导体可以忠实地传输信号。而长距离、高比特率的信号如果通过集中不同的导体,多种效应可以降低信号的可信度,这样系统或设备不能正常工作。信号完整性工程是分析和缓解上述负面效应的一项任务,在所有水平的电子封装和组装,例如集成电路的内部连接、集成电路封装、印制电路板等工艺过程中,都是一项十分重要的活动。信号完整性考虑的问题主要有振铃(ringing)、串扰(crosstalk)、接地反弹、扭曲、信号损失和电源供应中的噪音。
一、差分线的作用。
差分线主要是对抗电路板上干扰和噪声的。组成数字电路的数字器件一般都是由数字逻辑单元组成,而逻辑单元一般都是由开关器件,例如晶体管,mos管构成。数字电路中通常由高低电平来表示数字逻辑的”1”和”0”,但是电路中传输的高低电平本身却是模拟量。由于电路信号线导线带宽不是无穷大的,而且开关器件高频工作时候不能忽略寄生的电容以及电感的影响,其结果就是,在数字开关导通截止的时候,输出电压不会从高到底,或者从低到高的平滑过渡,会产生吉布斯(Gibbsphenomenon,如图所示)振荡,寄生电容,电感振荡等等,这些多余的振荡电压如果通过某种路径影响到有用信号的传输,那么对于有用信号来说,这些多余的东西就是干扰噪声了。上述只是信号干扰噪声的一个来源,还有很多其他的来源例如电源噪声,电磁干扰噪声等等。
解决干扰噪声问题的思路有两个方面:
1.从干扰的传输的路径上去消除。
就是让干扰和噪声尽可能大的衰减,在抵达有用信号传输导线上时候变得很小,从而不影响正常信号的传输。现在的高速电路设计有很多的设计原则和指导,都是用来减小干扰和噪声的。例如,EMC(ElectroMagneticCompatibility),电源去耦,快速入地,模拟和数字电源和地平面隔离等等,这里就不展开说了。
2.从提高传输信号本身的抗干扰和噪声的能力入手。
先普及一个叫噪声容限(NoiseMargin)的概念,噪声容限是指在前一极输出为最坏的情况下,为保证后一极正常工作,所允许的最大噪声幅度。噪声容限越大说明容许的噪声越大,电路的抗干扰性越好。如下图中,驱动器A传输信号到接收器B端的输入。
高电平噪声容限=min{VOH_A}(最小输出高电平电压)—min{VIH_B}(最小输入高电平电压)
低电平噪声容限=max{VOL_A}(最大输入低电平电压)—max{VIL_B}最大输出低电平电压
噪声容限=min{高电平噪声容限,低电平噪声容限}理论上说,只要表示逻辑“1”和“0”的高低电平电压差越大,噪声容限就会越大,但是越大的电压差就需要越高的电压供电,造成功耗的浪费,另外电压差越大,从低电过渡到高电平或者从高平过渡到低电平需要的时间越长,直接影响电路的最高的工作频率。
早先的数字电路通常是晶体管(transistor)电路,对应这种电路,自然发展出一种叫TTL(Transistor-TransistorLogic)的电平标准,数字器件在5V电源工作,通常驱动器表示高电平,既逻辑”1”的时候,输出电压》2.4V,典型值为3.5V;表示低电平,既逻辑“0”的时候,输出电压《0.4V,典型值0.2V。同时,输入端可分辨的最小输入高电平和最大输入低电平:输入高电平》=2.0V,输入低电平《=0.8V,噪声容限是0.4V。
可见TTL电路的抗噪声能力是不强的,TTL电路中高电平2.4V与电源5V之间还有很大空闲,对改善噪声容限并没什么好处,又会白白增大系统功耗,还会影响速度。所以后来就把一部分“砍”掉了,逐渐发展出一种叫LVTTL(Low-VoltageTTL)的电平标准,分辨支持3.3V电源和2.5V电源(还有支持更低电源的):
3.3VLVTTL:VCC:3.3V;VOH》=2.4V;VOL《=0.4V;VIH》=2V;VIL《=0.8V。
2.5VLVTTL:VCC:2.5V;VOH》=2.0V;VOL《=0.2V;VIH》=1.7V;VIL《=0.7V。
虽然LVTTL的标准,降低了供电电压,但是对噪声容限没有什么改善(还是0.4V),后来CMOS电路逐渐取代晶体管电路成为主流,对应便有了LVCMOS电平标准:
3.3VLVCMOS:VCC:3.3V;VOH》=3.2V;VOL《=0.1V;VIH》=2.0V;VIL《=0.7V。
2.5VLVCMOS:VCC:2.5V;VOH》=2.0V;VOL《=0.1V;VIH》=1.7V;VIL《=0.7V。
相比于LVTTL,LVCOMS电路的噪声容限得到一定的改善。
另外,TLL电路是不能和LVTTL和LVCMOS直接相连的,两者之间需要经过电阻网络匹配才可以。相同电源下LVTTL和LVCMOS电路导线是可以直接互连的,甚至不同电源之间也可以互相直连的,只是不能达到最佳的噪声容限。不过为了防止电流过载的情况出现,推荐在做电路设计的时候,信号导线串联个电阻什么的。
除了上述提到的电平标准之外常用的还有RS232(串口),RS422等电平标准,它们用正负电平表示逻辑“1”和“0”。还有工作在非饱和状态(饱和状态指只有导通和截止状态)的电平标准ECL,PECL等,这里也不展开说了。
多说一句,现在开源硬件很火,买个开发板,再买些周围的小的设备板子,或者自己做一些小板子很随意便可以搭起电路系统来,根本不用担心各个芯片,器件之间是否存在电压兼容的问题,就得益于LVTTL和LVCMOS这些电平标准的统一应用。所以真应该感谢前人的努力,使得我们可以像做软件一样做硬件。
以上无论TTL,LVTTL还是LVCOMS电平标准都是单端电压标准。所谓单端电压标准是指这些标准的输出或者输入电压都是相对于电路公用的地平面来讲的,在高速数字电路中,公用的地平面很容易传播干扰和噪声。
所以有没有某种技术既可以隔离干扰噪声,又能保持一定的噪声容限,还能高速的传输信号?
这当然难不倒聪明的攻(dan)城(shen)狮(gou),这时候差分传输技术出现了,区别于传统的一根信号线一根地线(在PCB中就是公用地)的做法,差分传输在这两根线上都传输信号,这两个信号的振幅相等,相位相反,例如网线中的双绞线就利用差分传输技术。一种比较常见的差分传输的电平标准叫LVDS(LowVoltageDifferentialSignal,用的也比较多,因为没有专利费),如下图:LVDS翻转电压只有350mv对应比较小的噪声容限,但是LVDS本身是不容易被干扰,如图线图中,差分信号分别在AB两路上传输,虽然单独看A和B都收到很大的干扰影响,但是他们差值A-B则受到的干扰影响小很多,这个过程叫共模干扰抑制(CommonModeRejection)。另外,较小的翻转电压能支持高速信号传输。我对题主所发的树莓派的开发板不太了解,但是大体上,如果是连接内存的差分线采用的应该是LVDS标准,显示方面如果支持的是普通RGB高清LCD屏幕,差分线采用的也应该是LVDS标准(没有专利费),如果支持的是HDMI估计采用的是TMDS标准,具体这两个标准有什么差别,感兴趣的话可以查查资料什么的。
二、蛇形走线的作用。
蛇形走线是为了保证电路时序约束的正确。数字电路中高低电平相互翻转的时候是需要时间的,为了保证在接受端电平能被正确的采样,通常会预留一点时间给信号电平建立起来,同样,正确的采样也需要一点时间,就需要信号翻转到某个电平后保持一段时间。这就是所谓的setuptime和holduptime。如上图,左边红色的Ts是setuptime,右边Th是holduptime。对于一个导线上传输信号来说了最大的时间延迟Tdelay=Tclk(工作时钟)-Ts-Th。对于多个导线信号传输的情况,如果他们之间的长度差距过长,信号在导线走的路线长短不一样,造成的时延差大过Tdelay,则接收端就会接收错误。上面两张图是从TI某款DAC芯片手册上截出来的,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 重庆市高2025届物理高二下期末达标检测模拟试题含解析
- 云南省昆明市2025年高二数学第二学期期末联考模拟试题含解析
- 成都市数字经济项目劳动合同
- 餐饮企业食品安全检测与监管服务合同
- 水利工程彩钢围挡施工与监理合同
- 车辆挂名合作免责条款合同范本
- 2024年荥经县招聘社区专职工作者笔试真题
- 计算机三级嵌入式技术试题及答案
- 网络地址规划的考试题目与答案
- 医院店铺招租合同
- 25学年四年级数学下期末复习每日一练
- 2024年江苏省无锡市中考历史真题(原卷版)
- 金矿合作协议书
- 山东科技大学投资经济学(专升本)期末复习题
- 2025年公共安全与管理相关考试题及答案
- 人教版三年级数学下册100道口算题大全(全册)
- 英才宿舍楼毕业设计答辩
- 牛肉生意转让协议书
- 2024年中考押题预测卷02(安徽卷)-物理(考试版)A4
- 2025年中国茴香市场现状分析及前景预测报告
- 电商直播对消费者购买行为影响的实证研究
评论
0/150
提交评论