


VIP免费下载
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Word———高二数学知识点梳理总结壹篇
高二数学学问点。
平常的学习工作中,我们一般会需要写一份或者几份总结报告。通过总结,我们可以更为客观的发觉自我。每写一次总结,就是在不断进步与学习:不管是在学习还是在工作上,我们唯有尽心、努力,才可以制造价值。那么我们写一篇总结需要考虑什么呢?下面是我细心收集整理,为您带来的《[精选总结]高二数学学问点梳理总结壹篇》,仅供参考,盼望能为您供应参考!
1.不等式证明的依据
(2)不等式的性质(略)F215.CoM
(3)重要不等式:①|a|≥0;a2≥0;(a-b)2≥0(a、b∈R)
②a2+b2≥2ab(a、b∈R,当且仅当a=b时取“=”号)
2.不等式的证明方法
(1)比较法:要证明ab(a0(a-b0),这种证明不等式的方法叫做比较法.
用比较法证明不等式的步骤是:作差——变形——推断符号.
(2)综合法:从已知条件动身,依据不等式的性质和已证明过的不等式,推导出所要证明的不等式成立,这种证明不等式的方法叫做综合法.
(3)分析法:从欲证的不等式动身,逐步分析使这不等式成立的充分条件,直到所需条件已推断为正确时,从而断定原不等式成立,这种证明不等式的方法叫做分析法.
证明不等式除以上三种基本方法外,还有反证法、数学归纳法等.
扩展阅读
热门总结:高中数学学问点总结(篇一)
在日常的学习工作中,我们间或会需要写总结。总结就是过去时间做的事的总检查、总评价。每次写总结,都是我们思索的绝好时机:人是可以无限制造价值的存在,我们做的每一件事都值得被仔细对待。那么我们在写总结的时候要特殊留意什么吗?下面是由我为大家整理的“热门总结:高中数学学问点总结(篇一)”,盼望能对您有所关心,请保藏。
(1)不等关系
感受在现实世界和日常生活中存在着大量的不等关系,了解不等式(组)的实际背景。
(2)一元二次不等式
①经受从实际情境中抽象出一元二次不等式模型的过程。
②通过函数图象了解一元二次不等式与相应函数、方程的联系。
③会解一元二次不等式,对给定的一元二次不等式,尝试设计求解的程序框图。
(3)二元一次不等式组与简洁线性规划问题
①从实际情境中抽象出二元一次不等式组。
②了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组(参见例2)。
③从实际情境中抽象出一些简洁的二元线性规划问题,并能加以解决(参见例3)。
(4)基本不等式
①探究并了解基本不等式的证明过程。
②会用基本不等式解决简洁的(小)值问题。
最新总结:初三数学学问点总结如何写
不管我们是学习,还是工作中,总会有写总结的时候。写总结可以推动我们的工作向前不断前进。每次写总结的时候,我们的大脑中都会形成新的学问:我们每一个人都是独一无二的存在,每个人都能制造价值。那么如何着手动笔撰写总结报告呢?以下是我收集整理的“最新总结:初三数学学问点总结如何写”,仅供参考,大家一起来看看吧。
单项式与多项式
仅含有一些数和字母的乘法包括乘方运算的式子叫做单项式单独的一个数或字母也是单项式。
单项式中的数字因数叫做这个单项式或字母因数的数字系数,简称系数。
当一个单项式的系数是1或—1时,“1”通常省略不写。
一个单项式中,全部字母的指数的和叫做这个单项式的次数。
假如在几个单项式中,不管它们的系数是不是相同,只要他们所含的字母相同,并且相同字母的指数也分别相同,那么,这几个单项式就叫做同类单项式,简称同类项全部的常数都是同类项。
1、多项式
有有限个单项式的代数和组成的式子,叫做多项式。
多项式里每个单项式叫做多项式的项,不含字母的项,叫做常数项。
单项式可以看作是多项式的特例
把同类单项式的系数相加或相减,而单项式中的字母的乘方指数不变。
在多项式中,所含的不同未知数的个数,称做这个多项式的元数经过合并同类项后,多项式所含单项式的个数,称为这个多项式的项数所含个单项式中次项的次数,就称为这个多项式的次数。
2、多项式的值
任何一个多项式,就是一个用加、减、乘、乘方运算把已知数和未知数连接起来的式子。
3、多项式的恒等
对于两个一元多项式fx、gx来说,当未知数x同取任一个数值a时,假如它们所得的值都是相等的,即fa=ga,那么,这两个多项式就称为是恒等的记为fx==gx,或简记为fx=gx。
性质1假如fx==gx,那么,对于任一个数值a,都有fa=ga。
性质2假如fx==gx,那么,这两个多项式的个同类项系数就肯定对应相等。
4、一元多项式的根
一般地,能够使多项式fx的值等于0的未知数x的值,叫做多项式fx的根。
多项式的加、减法,乘法
1、多项式的加、减法
2、多项式的乘法
单项式相乘,用它们系数作为积的系数,对于相同的字母因式,则连同它的指数作为积的一个因式。
3、多项式的乘法
多项式与多项式相乘,先用一个多项式等每一项乘以另一个多项式的各项,再把所得的积相加。
常用乘法公式
公式I平方差公式
a+ba—b=a^2—b^2
两个数的和与这两个数的差的积等于这两个数的平方差。
有用总结:高二语文学问点总结壹篇
在我们的现实生活与工作中,时常会需要写总结报告。写总结也是为了让自己变得优秀、更有力量!我们写下的总结,在另一方面提示着我们:人的力气是无求无尽的,信任自己就肯定能做到。那么我们书写总结时怎么样才能出彩呢?下面是由我为大家整理的“有用总结:高二语文学问点总结壹篇”,欢迎大家阅读,盼望对大家有所关心。
一、一词多义梳理
①事、事故、变故、缘由、原因:公问其故
②旧、往昔、过去的、原来的:豫章故郡
③故交、老伴侣:君安与项伯有故(《鸿门宴》
故④年轻:暮去朝来颜色故(《琵琶行》)
⑤有意、特地:故久立与其客语(《信陵君窃符救赵》)
⑥依旧、照旧:大人故嫌迟(《孔雀东南飞》)
③因果连词,所以:故幸来告良(《鸿门宴》
①完:担中肉尽(《狼》)
②全部用出或极力完成:尽吾志也而不能至者,可以无悔矣(《游褒禅山记》)
尽③全、都:宾主尽东南之美《滕王阁序》
④全部的:尽人皆知
⑤极:尽善尽美
属(以下读shǔ)①统属、隶属、届寸::时维九月,序属三秋
②类、辈:若属皆且为所虏(《鸿门宴》)
以下读zhǔ③连接:平原君使者冠盖相属于魏(《信陵君窃符救赵》)
④撰写:屈平属草稿未定(《屈原列传》)
⑤嘱托,通“嘱”:属予以记之(《岳阳楼记》)
①走近、靠近、接近:以缚即炉火烧绝之
②马上、就:太守即遣人随其往
即③就是:此即风景之尤胜者也
④假如:即有如不称。妾得无随坐乎
⑤当、当前:胜利在即
⑥通“则”,就:且壮士不死即已
⑦犹如:桂殿兰宫,即冈峦之体势
①却、可是:穷且益坚,不坠青云之志
且②将近:年且九十《愚公移山》
③姑且、暂且:且放白鹿青崖间,须行即骑访名山(《梦游天姥吟留别》)
④边……边,又……又:又有若老人咳且笑于山谷中者
⑤况且、再说:且焉置土石(《愚公移山》)
⑥尚且:臣死且不避(《鸿门宴》)
胜中秋尤胜——盛大
予观夫巴陵胜状——美丽山水
日出江花红胜火——超过
数不胜数——尽,能承受
错纷错如织——交叉
它山之石,可以为错——磨刀石
以君为长者,故不错意——通“措”,处置
状雷锟电霍,无得而状——描述
以筒水灌之始出,状极俊健——形态
予观夫巴陵胜状——景色、景观
状河伯留客之久——估量
寻而病寻作,余既岂归——不久
未果,寻病终——不久
寻向所志,遂迷,不复得路——查找
八尺为寻——量词,一寻
优质总结:高二数学的学问点总结篇二
在平日里的学习与工作中,我们在某些状况下需要写总结报告。总结是对过去的事情的简洁概括,也是提升自己的关键因素之一。每次写下总结,我们就多了一份感知与思索:人的力气是无求无尽的,信任自己就肯定能做到。那么我们写一篇总结需要考虑什么呢?下面是我为大家整理的“优质总结:高二数学的学问点总结篇二”,仅供参考,欢迎大家阅读。
一般地,设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),假如每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简洁随机抽样。
简洁随机抽样的特点:
(1)用简洁随机抽样从含有N个个体的总体中抽取一个容量为n的样本时,每次抽取一个个体时任一个体被抽到的概率为;在整个抽样过程中各个个体被抽到的概率为
(2)简洁随机抽样的特点是,逐个抽取,且各个个体被抽到的概率相等;
(3)简洁随机抽样方法,体现了抽样的客观性与公正性,是其他更简单抽样方法的基础.
(4)简洁随机抽样是不放回抽样;它是逐个地进行抽取;它是一种等概率抽样
简洁抽样常用方法:
(1)抽签法:先将总体中的全部个体(共有N个)编号(号码可从1到N),并把号码写在外形、大小相同的号签上(号签可用小球、卡片、纸条等制作),然后将这些号签放在同一个箱子里,进行匀称搅拌,抽签时每次从中抽一个号签,连续抽取n次,就得到一个容量为n的样本适用范围:总体的个体数不多时优点:抽签法简便易行,当总体的个体数不太多时相宜采纳抽签法.(2)随机数表法:随机数表抽样“三步曲”:第一步,将总体中的个体编号;其次步,选定开头的数字;第三步,猎取样本号码概率:
相关高中数学学问点:系统抽样
系统抽样的概念:
当整体中个体数较多时,将整体均分为几个部分,然后按肯定的规章,从每一个部分抽取1个个体而得到所需要的样本的方法叫系统抽样。
系统抽样的步骤:
(1)采纳随机方式将总体中的个体编号;
(2)将整个编号进行匀称分段在确定相邻间隔k后,若不能匀称分段,即
=k不是整数时,可采纳随机方法从总体中剔除一些个体,使总体中剩余的个体数N′满意是整数;
(3)在第一段中采纳简洁随机抽样方法确定第一个被抽得的个体编号l;
(4)依次将l加上ik,i=1,2,…,(n-1),得到其余被抽取的个体的编号,从而得到整个样本。
相关高中数学学问点:分层抽样
分层抽样:
当已知总体由差异明显的几部分组成时,常将总体分成几部分,然后根据各部分所占的比例进行抽样,这种抽样叫做分层抽样,其所分成的各个部分叫做层。
利用分层抽样抽取样本,每一层根据它在总体中所占的比例进行抽取。
不放回抽样和放回抽样:
在抽样中,假如每次抽出个体后不再将它放回总体,称这样的抽样为不放回抽样;假如每次抽出个体后再将它放回总体,称这样的抽样为放回抽样.
随机抽样、系统抽样、分层抽样都是不放回抽样
分层抽样的特点:
(1)分层抽样适用于差异明显的几部分组成的状况;
(2)在每一层进行抽样时,在采纳简洁随机抽样或系统抽样;
(3)分层抽样充分利用已把握的信息,使样具有良好的代表性;
(4)分层抽样也是等概率抽样,而且在每层抽样时,可以依据详细状况采纳不同的抽样方法,因此应用较为广泛。
今日总结:最新高中数学学问点总结其二
在我们的现实生活与工作中,时常会需要写总结报告。写总结可以丰富我们的专业学问,提升专业水平。每次写总结的时候,我们的大脑中都会形成新的学问:人的力气是无求无尽的,信任自己就肯定能做到。那么我们自己怎么写出一篇总结报告呢?以下是我收集整理的“今日总结:最新高中数学学问点总结其二”,欢迎阅读,盼望您能阅读并保藏。
有界性
设函数f(x)在区间X上有定义,假如存在M0,对于一切属于区间X上的x,恒有|f(x)|≤M,则称f(x)在区间X上有界,否则称f(x)在区间上无界。
单调性
设函数f(x)的定义域为D,区间I包含于D。假如对于区间上任意两点x1及x2,当x1f(x2),则称函数f(x)在区间I上是单调递减的。单调递增和单调递减的函数统称为单调函数。
奇偶性
设为一个实变量实值函数,若有f(—x)=—f(x),则f(x)为奇函数。
几何上,一个奇函数关于原点对称,亦即其图像在绕原点做180度旋转后不会转变。
奇函数的例子有x、sin(x)、sinh(x)和erf(x)。
设f(x)为一实变量实值函数,若有f(x)=f(—x),则f(x)为偶函数。
几何上,一个偶函数关于y轴对称,亦即其图在对y轴映射后不会转变。
偶函数的例子有|x|、x2、cos(x)和cosh(x)。
偶函数不行能是个双射映射。
连续性
在数学中,连续是函数的一种属性。直观上来说,连续的函数就是当输入值的变化足够小的时候,输出的变化也会随之足够小的函数。假如输入值的某种微小的变化会产生输出值的一个突然的跳动甚至无法定义,则这个函数被称为是不连续的函数(或者说具有不连续性)。
月度总结精选:高二数学学问点回顾模板
不管我们是学习,还是工作中,总会有写总结的时候。通过总结,我们可以更好的熟悉自己、反思自己。每写一次总结,我们就可以想的越多:每一份工作都是有意义的,它们的价值也是巨大的。那么如何着手动笔撰写总结报告呢?我特地为大家细心收集和整理了“月度总结精选:高二数学学问点回顾模板”,仅供您在工作和学习中参考。
一、直线与方程
(1)直线的倾斜角
定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特殊地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α<180°
(2)直线的斜率
①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k表示。即。斜率反映直线与轴的倾斜程度。
当时,;当时,;当时,不存在。
②过两点的直线的斜率公式:
留意下面四点:(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;
(2)k与P1、P2的挨次无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;
(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。
(3)直线方程
①点斜式:直线斜率k,且过点
留意:当直线的斜率为0°时,k=0,直线的方程是y=y1。
当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1。
②斜截式:,直线斜率为k,直线在y轴上的截距为b
③两点式:()直线两点,
④截矩式:
其中直线与轴交于点,与轴交于点,即与轴、轴的截距分别为。
⑤一般式:(A,B不全为0)
留意:各式的适用范围特别的方程如:
平行于x轴的直线:(b为常数);平行于y轴的直线:(a为常数);
(5)直线系方程:即具有某一共同性质的直线
(一)平行直线系
平行于已知直线(是不全为0的常数)的直线系:(C为常数)
(二)垂直直线系
垂直于已知直线(是不全为0的常数)的直线系:(C为常数)
(三)过定点的直线系
(ⅰ)斜率为k的直线系:,直线过定点;
(ⅱ)过两条直线,的交点的直线系方程为
(为参数),其中直线不在直线系中。
(6)两直线平行与垂直
当,时,;
留意:利用斜率推断直线的平行与垂直时,要留意斜率的存在与否。
(7)两条直线的交点
相交
交点坐标即方程组的一组解。
方程组无解;方程组有很多解与重合
(8)两点间距离公式:设是平面直角坐标系中的两个点,
则
(9)点到直线距离公式:一点到直线的距离
(10)两平行直线距离公式
在任始终线上任取一点,再转化为点到直线的距离进行求解。
二、圆的方程
1、圆的定义:平面内到肯定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。
2、圆的方程
(1)标准方程,圆心,半径为r;
(2)一般方程
当时,方程表示圆,此时圆心为,半径为
当时,表示一个点;当时,方程不表示任何图形。
(3)求圆方程的方法:
一般都采纳待定系数法:先设后求。确定一个圆需要三个自立条件,若利用圆的标准方程,
需求出a,b,r;若利用一般方程,需要求出D,E,F;
另外要留意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。
3、直线与圆的位置关系:
直线与圆的位置关系有相离,相切,相交三种状况:
(1)设直线,圆,圆心到l的距离为,则有;;
(2)过圆外一点的切线:①k不存在,验证是否成立②k存在,设点斜式方程,用圆心到该直线距离=半径,求解k,得到方程
(3)过圆上一点的切线方程:圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)=r2
4、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。
设圆,
两圆的位置关系常通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。
当时两圆外离,此时有公切线四条;
当时两圆外切,连心线过切点,有外公切线两条,内公切线一条;
当时两圆相交,连心线垂直平分公共弦,有两条外公切线;
当时,两圆内切,连心线经过切点,只有一条公切线;
当时,两圆内含;当时,为同心圆。
留意:已知圆上两点,圆心必在中垂线上;已知两圆相切,两圆心与切点共线
圆的帮助线一般为连圆心与切线或者连圆心与弦中点
三、立体几何初步
1、柱、锥、台、球的结构特征
(1)棱柱:
几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。
(2)棱锥
几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相像,其相像比等于顶点到截面距离与高的比的平方。
(3)棱台:
几何特征:①上下底面是相像的.平行多边形②侧面是梯形③侧棱交于原棱锥的顶点
(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成
几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面绽开图是一个矩形。
(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成
几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面绽开图是一个扇形。
(6)圆台:定义:以直角梯形的垂直与底边的腰为旋转轴,旋转一周所成
几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面绽开图是一个弓形。
(7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体
几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。
2、空间几何体的三视图
定义三视图:正视图(光线从几何体的前面对后面正投影);侧视图(从左向右)、
俯视图(从上向下)
注:正视图反映了物体的高度和长度;俯视图反映了物体的长度和宽度;侧视图反映了物体的高度和宽度。
3、空间几何体的直观图——斜二测画法
斜二测画法特点:①原来与x轴平行的线段仍旧与x平行且长度不变;
②原来与y轴平行的线段仍旧与y平行,长度为原来的一半。
4、柱体、锥体、台体的表面积与体积
(1)几何体的表面积为几何体各个面的面积的和。
(2)特别几何体表面积公式(c为底面周长,h为高,为斜高,l为母线)
(3)柱体、锥体、台体的体积公式
(4)球体的表面积和体积公式:V=;S=
4、空间点、直线、平面的位置关系
公理1:假如一条直线的两点在一个平面内,那么这条直线是全部的点都在这个平面内。
应用:推断直线是否在平面内
用符号语言表示公理1:
公理2:假如两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线
符号:平面α和β相交,交线是a,记作α∩β=a。
符号语言:
公理2的作用:
①它是判定两个平面相交的方法。
②它说明两个平面的交线与两个平面公共点之间的关系:交线必过公共点。
③它可以推断点在直线上,即证若干个点共线的重要依据。
公理3:经过不在同一条直线上的三点,有且只有一个平面。
推论:始终线和直线外一点确定一平面;两相交直线确定一平面;两平行直线确定一平面。
公理3及其推论作用:
①它是空间内确定平面的依据
②它是证明平面重合的依据
公理4:平行于同一条直线的两条直线相互平行
空间直线与直线之间的位置关系
①异面直线定义:不同在任何一个平面内的两条直线
②异面直线性质:既不平行,又不相交。
③异面直线判定:过平面外一点与平面内一点的直线与平面内不过该店的直线是异面直线
④异面直线所成角:作平行,令两线相交,所得锐角或直角,即所成角。两条异面直线所成角的范围是(0°,90°],若两条异面直线所成的角是直角,我们就说这两条异面直线相互垂直。
求异面直线所成角步骤:
A、利用定义构造角,可固定一条,平移另一条,或两条同时平移到某个特别的位置,顶点选在特别的位置上。
B、证明作出的角即为所求角
C、利用三角形来求角
(7)等角定理:假如一个角的两边和另一个角的两边分别平行,那么这两角相等或互补。
(8)空间直线与平面之间的位置关系
直线在平面内——有很多个公共点.
三种位置关系的符号表示:aαa∩α=Aa‖α
(9)平面与平面之间的位置关系:平行——没有公共点;α‖β
相交——有一条公共直线。α∩β=b
5、空间中的平行问题
(1)直线与平面平行的判定及其性质
线面平行的判定定理:平面外一条直线与此平面内一条直线平行,则该直线与此平面平行。
线线平行线面平行
线面平行的性质定理:假如一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。线面平行线线平行
(2)平面与平面平行的判定及其性质
两个平面平行的判定定理
(1)假如一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行
(线面平行→面面平行),
(2)假如在两个平面内,各有两组相交直线对应平行,那么这两个平面平行。
(线线平行→面面平行),
(3)垂直于同一条直线的两个平面平行,
两个平面平行的性质定理
(1)假如两个平面平行,那么某一个平面内的直线与另一个平面平行。(面面平行→线面平行)
(2)假如两个平行平面都和第三个平面相交,那么它们的交线平行。(面面平行→线线平行)
7、空间中的垂直问题
(1)线线、面面、线面垂直的定义
①两条异面直线的垂直:假如两条异面直线所成的角是直角,就说这两条异面直线相互垂直。
②线面垂直:假如一条直线和一个平面内的任何一条直线垂直,就说这条直线和这个平面垂直。
③平面和平面垂直:假如两个平面相交,所成的二面角(从一条直线动身的两个半平面所组成的图形)是直二面角(平面角是直角),就说这两个平面垂直。
(2)垂直关系的判定和性质定理
①线面垂直判定定理和性质定理
判定定理:假如一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直这个平面。
性质定理:假如两条直线同垂直于一个平面,那么这两条直线平行。
②面面垂直的判定定理和性质定理
判定定理:假如一个平面经过另一个平面的一条垂线,那么这两个平面相互垂直。
性质定理:假如两个平面相互垂直,那么在一个平面内垂直于他们的交线的直线垂直于另一个平面。
9、空间角问题
(1)直线与直线所成的角
①两平行直线所成的角:规定为。
②两条相交直线所成的角:两条直线相交其中不大于直角的角,叫这两条直线所成的角。
③两条异面直线所成的角:过空间任意一点O,分别作与两条异面直线a,b平行的直线,形成两条相交直线,这两条相交直线所成的不大于直角的角叫做两条异面直线所成的角。
(2)直线和平面所成的角
①平面的平行线与平面所成的角:规定为。
②平面的垂线与平面所成的角:规定为。
③平面的斜线与平面所成的角:平面的一条斜线和它在平面内的射影所成的锐角,叫做这条直线和这个平面所成的角。
求斜线与平面所成角的思路类似于求异面直线所成角:“一作,二证,三计算”。
在“作角”时依定义关键作射影,由射影定义知关键在于斜线上一点到面的垂线,
在解题时,留意挖掘题设中两个主要信息:
(1)斜线上一点到面的垂线;
(2)过斜线上的一点或过斜线的平面与已知面垂直,由面面垂直性质易得垂线。
(3)二面角和二面角的平面角
①二面角的定义:从一条直线动身的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,这两个半平面叫做二面角的面。
②二面角的平面角:以二面角的棱上任意一点为顶点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫二面角的平面角。
③直二面角:平面角是直角的二面角叫直二面角。
两相交平面假如所组成的二面角是直二面角,那么这两个平面垂直;反过来,假如两个平面垂直,那么所成的二面角为直二面角
④求二面角的方法
定义法:在棱上选择有关点,过这个点分别在两个面内作垂直于棱的射线得到平面角
垂面法:已知二面角内一点到两个面的垂线时,过两垂线作平面与两个面的交线所成的角为二面角的平面角
总结保藏:高二数学学问点回顾季度范文精选
在我们的学习或者工作中,总少不了要写总结。总结写多了,我们就会发觉其中蕴含的规律。每多写一次总结,我们的进步就越显著:有时候,为他人制造价值,也是在为自己制造价值。那么你知道怎么书写优秀的总结报告吗?我特地为您收集整理“总结保藏:高二数学学问点回顾季度范文精选”,仅供参考,欢迎大家阅读。
1、学会三视图的分析:
2、斜二测画法应留意的地方:
(1)在已知图形中取相互垂直的轴Ox、Oy。画直观图时,把它画成对应轴o'x'、o'y'、使∠x'o'y'=45°(或135°);(2)平行于x轴的线段长不变,平行于y轴的线段长减半。(3)直观图中的45度原图中就是90度,直观图中的90度原图肯定不是90度。
3、表(侧)面积与体积公式:
⑴柱体:①表面积:S=S侧+2S底;②侧面积:S侧=;③体积:V=S底h
⑵锥体:①表面积:S=S侧+S底;②侧面积:S侧=;③体积:V=S底h:
⑶台体①表面积:S=S侧+S上底S下底②侧面积:S侧=
⑷球体:①表面积:S=;②体积:V=
4、位置关系的证明(主要方法):留意立体几何证明的书写
(1)直线与平面平行:①线线平行线面平行;②面面平行线面平行。
(2)平面与平面平行:①线面平行面面平行。
(3)垂直问题:线线垂直线面垂直面面垂直。核心是线面垂直:垂直平面内的两条相交直线
5、求角:(步骤———————Ⅰ。找或作角;Ⅱ。求角)
⑴异面直线所成角的求法:平移法:平移直线,构造三角形;
⑵直线与平面所成的角:直线与射影所成的角
[总结共享]学校地理学问点梳理回顾(通用)
当我们的学习或者工作结束一段进程的时候,常常会需要写总结。通过总结,我们可以全面、系统地了解以往的状况。每次写下的总结,会在我们心中形成声音:每个人都有各自的价值,力量越大责任越大。那么你知道怎么书写优秀的总结报告吗?我收集并整理了“[总结共享]学校地理学问点梳理回顾(通用)”,欢迎大家阅读,盼望对大家有所关心。
1.地球的公转:
地球自西向东绕太阳不停地旋转,周期为365.2422天
2.太阳高度:
太阳光与地面的交角,叫做太阳高度角,简称太阳高度。
(1)一天中太阳高度正午最大,杆影最短。(由于地球自转)
(2)一年中,正午太阳高度夏季最大,杆影最短,冬季正午太
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 关+于媒介体育畸变困境下的媒体自律
- 公司安装日常管理制度
- 公司等级划分管理制度
- 公司网银付款管理制度
- 公司舆情监测管理制度
- 公司资本运作管理制度
- 风管工人安全交底-浪潮-2022.7
- 二次配管开槽及管线敷设安全技术交底
- 2025股权投资合同范本 适用于企业投资协议
- 广西壮族自治区百色市2023−2024学年高一下册7月期末教学质量调研测试数学试卷附解析
- 校园农场制度
- 餐厅小票打印模板
- 商场电路施工方案
- 脑疝急救流程图
- 中医适宜技术之中药热奄包的课件
- 单体液压支柱检修工艺及标准
- 中建医院抗浮锚杆施工方案
- 工贸企业重大事故隐患判定标准培训PPT
- 某院检验科仪器设备档案
- 起重设备维护保养记录(完整版)
- 北京市医药卫生科技促进中心关于印发《首都医学科技创新成果转化优促计划实施方案(试行)的通知》
评论
0/150
提交评论