普通高等学校招生全国统一考试数学文试题(浙江卷含解析)_第1页
普通高等学校招生全国统一考试数学文试题(浙江卷含解析)_第2页
普通高等学校招生全国统一考试数学文试题(浙江卷含解析)_第3页
普通高等学校招生全国统一考试数学文试题(浙江卷含解析)_第4页
普通高等学校招生全国统一考试数学文试题(浙江卷含解析)_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

一般高等学校招生全国一致考试数学文试题(浙江卷,含解析)一般高等学校招生全国一致考试数学文试题(浙江卷,含解析)12/12一般高等学校招生全国一致考试数学文试题(浙江卷,含解析)2015年一般高等学校招生全国一致考试数学文试题(浙江卷,含解析)一、选择题(本大题共

8

小题,每题

5分,共

40分.在每题给出的四个选项中,只有一项是吻合题目要求的.

)xx22x3Qx2x4IQ()1、已知会集,,则A.3,4B.2,3C.1,2D.1,3【答案】A【解析】试题解析:由题意得,Px|x3或x1,所以PIQ[3,4),应选A.考点:1.一元二次不等式的解法;2.会集的交集运算.2、某几何体的三视图以下列图(单位:cm),则该几何体的体积是()A.8cm3B.12cm33240C.3cm3D.3cm3【答案】C考点:1.三视图;2.空间几何体的体积.3、设a,b是实数,则“ab0”是“ab0”的()A.充分不用要条件B.必要不充分条件C.充分必要条件D.既不充分也不用要条件【答案】D考点:1.充分条件、必要条件;2.不等式的性质.4、设,是两个不相同的平面,l,m是两条不相同的直线,且l,m()A.若l,则B.若,则lmC.若l//,则//D.若//,则l//m【答案】A【解析】试题解析:采用消除法,选项A中,平面与平面垂直的判断,故正确;选项B中,当时,l,m可以垂直,也可以平行,也可以异面;选项C中,l//时,,可以订交;选项D中,//时,l,m也可以异面.应选A.考点:直线、平面的地址关系.fxx1cosx5、函数x(x且x0)的图象可能为()A.

B.

C.

D.【答案】【解析】

Df(x)(x1)cosx(x1)cosxf(x)试题解析:因为xx,故函数是奇函数,所以排除A,B;取xf()(1)cos(1)0,则,应选D.考点:1.函数的基本性质;2.函数的图象.6、有三个房间需要粉刷,粉刷方案要求:每个房间只用一种颜色,且三个房间颜色各不相同.已知三个房间的粉刷面积(单位:m2)分别为x,y,z,且xyz,三种颜色涂料的粉刷花销(单位:元/m2)分别为a,b,c,且abc.在不相同的方案中,最低的总花销(单位:元)是()A.axbyczB.azbycxC.aybzcxD.aybxcz【答案】B考点:1.不等式性质;2.不等式比较大小.7、如图,斜线段与平面所成的角为60o,为斜足,平面上的动点满足30o,则点的轨迹是()A.直线B.抛物线C.椭圆D.双曲线的一支【答案】C【解析】试题解析:由题可知,当P点运动时,在空间中,满足条件的AP绕AB旋转形成一个圆锥,用一个与圆锥高成60o角的平面截圆锥,所得图形为椭圆.应选C.考点:1.圆锥曲线的定义;2.线面地址关系.8、设实数a,b,t满足a1sinbt()A.若t确定,则b2唯一确定B.若t确定,则a22a唯一确定C.若t确定,则sinb2唯一确定D.若t确定,则a2a唯一确定【答案】B【解析】试题解析:因为a1sinbt,所以(a1)2sin2bt2,所以a22at21,故当t确准时,t21确定,所以a22a唯一确定.应选B.考点:函数看法二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分.)9、计算:log222,2log23log43.1,33【答案】2考点:对数运算10、已知an是等差数列,公差d不为零.若a2,a3,a7成等比数列,且2a1a21,则a1,d.2,1【答案】3【解析】试题解析:由题可得,(a12d)2(a1d)(a16d),故有3a12d0,又因为2a1a21,d1,a123.即3a1d1,所以考点:1.等差数列的定义和通项公式;2.等比中项.fxsin2xsinxcosx1的最小正周期是,最小值是.11、函数,322【答案】【解析】fxsin2xsinxcosx11sin2x1cos2x11sin2x1cos2x3试题解析:222222)3T2f(x)min32sin(2x4222.22,所以;考点:1.三角函数的图象与性质;2.三角恒等变换.x2,x1fx66,x1xff2,fx的最小值12、已知函数x,则是.1;266【答案】2考点:1.分段函数求值;2.分段函数求最值.rrrr1rrrrre1e22.若平面向量1,则13、已知e1,e2是平面单位向量,且b满足be1be2rb.23【答案】3【解析】uruur(13rrr(1,0)e2,)x1,试题解析:由题可知,不如e1,22,设b(x,y),则be1rr131r3r1123be2xyb(1,)b33.22,所以3,所以考点:1.平面向量数量积运算;2.向量的模.14、已知实数x,y满足x2y21,则2xy46x3y的最大值是.【答案】15【解析】2x2y,y22xz2xy46x3y3x4y,y22x试题解析:10由图可知当y22x时,满足的是如图的AB劣弧,则z2x2y在点A(1,0)处获取最大值5;当y22x时,满足的是如图的AB优弧,则z103x4y与该优弧相切时获取最大值,故z101d,所以z15,故该目标函数的最大值为15.考点:1.简单的线性规划;x2y21b0)的右焦点Fc,0ybx15、椭圆a2b2Q在椭圆上,(a关于直线c的对称点则椭圆的离心率是.2【答案】2考点:1.点关于直线对称;2.椭圆的离心率.三、解答题(本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.

)ABC中,内角A,B,C所对的边分别为a,b,ctan(A)216.(本题满分14分)在.已知4.sin2A1)求sin2A+cos2A的值;B,a3(2)若4,求ABC的面积.2【答案】(1)5;(2)9考点:1.同角三角函数基本关系式;2.正弦定理;3.三角形面积公式.17.(本题满分15分)已知数列{an}和{bn}满足,a12,b11,an12an(nN*),b11b21b3L1bnbn11(nN*).23n1)求an与bn;2)记数列{anbn}的前n项和为Tn,求Tn.【答案】(1)an2n;bnn;(2)Tn(n1)2n12(nN*)【解析】试题解析:(1)依照数列递推关系式,确定数列的特点,获取数列的通项公式;(2)依照(1)问得到新的数列的通项公式,利用错位相减法进行数列求和.考点:1.等差等比数列的通项公式;2.数列的递推关系式;3.错位相减法求和.18.(本题满分15分)如图,在三棱锥ABC-A1B1C1中,?ABC=900,AB=AC2,AA1=4,A1在底面ABC的射影为BC的中点,D为B1C1的中点.(1)证明:A1D平面A1BC;(2)求直线A1B和平面BB1CC1所成的角的正弦值.7【答案】(1)略;(2)8(2)作A1FDE,垂足为F,连结BF.因为AE平面A1BC,所以BCA1E.因为BCAE,所以BC平面AA1DE.所以BCA1F,A1F平面BB1C1C.所以A1BF为直线A1B与平面BB1C1C所成角的平面角.由ABAC2,CAB90o,得EAEB2.由AE平面A1BC,得A1AA1B4,A1E14.由DEBB14,DA1EA2,DA1E90o,得A1F72.sin7A1BF所以8考点:1.空间直线、平面垂直关系的证明;2.直线与平面所成的角.1219.(本题满分15分)如图,已知抛物线C1:y=4x,圆C2:x2+(y-1)2=1,过点P(t,0)(t>0)作但是原点O的直线PA,PB分别与抛物线C1和圆C2相切,A,B为切点.(1)求点A,B的坐标;(2)求PAB的面积.注:直线与抛物线有且只有一个公共点,且与抛物线的对称轴不平行,则该直线与抛物线相切,称该公共点为切点.A(2t,t2),B(2t2,2t22)t3【答案】(1)1t1t;(2)2因为直线PA与抛物线相切,所以16k216kt0,解得kt.所以x2t,即点A(2t,t2).设圆C2的圆心为D(0,1),点B的坐标为(x0,y0),由题意知,点B,O关于直线PD对称,故y0x0

12t有x0ty00,x02t2,y02t22t2t22)1t1t2B(2,解得.即点1t1t.(2)由(1)知,APt1t2,直线AP的方程为txyt20,dt21t2所以点B到直线PA的距离为.S1t3APd2.所以PAB的面积为2考点:1.抛物线的几何性质;2.直线与圆的地址关系;3.直线与抛物线的地址关系.20.(本题满分15分

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论