2022年人教版《三视图》公开课教案_第1页
2022年人教版《三视图》公开课教案_第2页
2022年人教版《三视图》公开课教案_第3页
2022年人教版《三视图》公开课教案_第4页
2022年人教版《三视图》公开课教案_第5页
全文预览已结束

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

三视图第1课时三视图1.会从投影的角度理解视图的概念;(重点)2.会画简单几何体的三视图.(难点)一、情境导入如以下图:直三棱柱的侧棱与水平投影面垂直,请与同伴一起探讨下面的问题:(1)以水平投影面为投影面,在正投影下这个直三棱柱的三条侧棱的投影是什么图形?(2)画出直三棱柱在水平投影面的正投影,得到的投影是什么图形?它与直三棱柱底面有什么关系?这个水平投影能完全反映这个物体的形状和大小吗?如不能,那么还需哪些投影面?物体的正投影从一个方向反映了物体的形状和大小,为了全面地反映一个物体的形状和大小,我们常常再选择正面和侧面两个投影面,今天我们将学习与这三个面的投影相关的知识.二、合作探究探究点一:简单几何体的三视图【类型一】判断俯视图下面的几何体中,俯视图为三角形的是()解析:选项A.长方体的俯视图是长方形,错误;选项B.圆锥的俯视图是带圆心的圆,错误;选项C.圆柱的俯视图是圆,错误;选项D.三棱柱的俯视图是三角形,正确;应选D.方法总结:在水平面内得到的由上向下观察物体的视图,即为俯视图.变式训练:见《》本课时练习“课堂达标训练〞第1题【类型二】判断主视图下面的几何体中,主视图为三角形的是()解析:选项A.主视图是长方形,错误;选项B.主视图是长方形,错误;选项,正确;选项,中间还有一条线,错误;应选C.方法总结:一个物体在三个投影面内同时进行正投影,在正面内得到的由前向后观察物体的视图,即为主视图.变式训练:见《》本课时练习“课堂达标训练〞第3题【类型三】判断左视图在下面的四个几何体中,左视图与主视图不相同的几何体是()解析:选项A.正方体的左视图与主视图都是正方形,不合题意;选项B.长方体的左视图与主视图都是矩形,但是矩形的长宽不一样,符合题意;选项C.球的左视图与主视图都是圆,不合题意;选项D.圆锥的左视图与主视图都是等腰三角形,不合题意;应选B.方法总结:主视图、左视图是分别从物体正面、左面看所得到的图形.变式训练:见《》本课时练习“课堂达标训练〞第4题探究点二:简单组合体的三视图用四个相同的小立方体搭几何体,要求每个几何体的主视图、左视图、俯视图中至少有两种视图的形状是相同的,以下四种摆放方式中不符合要求的是()解析:选项A.此几何体的主视图和俯视图都是,不合题意;选项B.此几何体的主视图和左视图都是,不合题意;选项C.此几何体的主视图和左视图都是,不合题意;选项D.此几何体的主视图是,俯视图是,左视图是,符合题意,应选D.方法总结:主视图、左视图、俯视图是分别从正面、左面、上面所看到的图形.理解定义是解决问题的关键.变式训练:见《》本课时练习“课堂达标训练〞第5题探究点三:画图形的三视图分别画出图中几何体的主视图、左视图和俯视图.解析:从正面看,从左往右4列正方形的个数依次为1,3,1,1;从左面看,从左往右3列正方形的个数依次为3,1,1;从上面看,从左往右4列正方形的个数依次为1,3,1,1.解:如以下图:方法总结:画三视图的步骤:①确定主视图位置,画出主视图;②在主视图的正下方画出俯视图,注意与主视图“长对正〞;③在主视图的正右方画出左视图,注意与主视图“高平齐〞、与俯视图“宽相等〞.要注意几何体看得见局部的轮廓线画成实线,被其他局部遮挡而看不见的局部的轮廓线画成虚线.变式训练:见《》本课时练习“课后稳固提升〞第7题三、板书设计1.主视图、俯视图和左视图的概念;2.三视图的画法.本节课力求突出具体、生动、直观,因此,学生多以亲自操作、观察实物模型和图片等活动为主.使用多媒体教学,使学生更直观的感受知识,激发学习兴趣.在本次教学过程中,丰富了学生观察、操作、猜测、想象、交流等活动经验,培养了学生的观察能力和想象能力,提升了他们的空间观念.第2课时比例线段1.知道线段的比的概念,会计算两条线段的比;(重点)2.理解成比例线段的概念;(重点)3.掌握成比例线段的判定方法.(难点)一、情境导入请观察以下几幅图片,你能发现些什么?你能对观察到的图片特点进行归纳吗?这些例子都是形状相同、大小不同的图形.它们之所以大小不同,是因为它们图上对应的线段的长度不同.二、合作探究探究点一:线段的比【类型一】根据线段的比求长度如下列图,M为线段AB上一点,AM∶MB=3∶5,且AB=16cm,求线段AM、BM的长度.解:线段AM与MB的比反映了这两条线段在全线段AB中所占的份数,由AM∶MB=3∶5可知AM=eq\f(3,8)AB,MB=eq\f(5,8)AB.∵AB=16cm,∴AM=eq\f(3,8)×16=6(cm),MB=eq\f(5,8)×16=10(cm).方法总结:此题也可设AM=3k,MB=5k,利用3k+5k=16求解更简便,这也是解这类题常用的方法.【类型二】比例尺在比例尺为1∶50000的地图上,量得甲、乙两地的距离是3cm,那么甲、乙两地的实际距离是________m.解析:根据“比例尺=eq\f(图上距离,实际距离)〞可求解.设甲、乙两地的实际距离为xcm,那么有1∶50000=3∶x,解得x=150000cm=1500m.方法总结:理解比例尺的意义,注意实际尺寸的单位要进行恰当的转化.探究点二:成比例线段【类型一】判断线段成比例以下四组线段中,是成比例线段的是()A.3cm,4cm,5cm,6cmB.4cm,8cm,3cm,5cmC.5cm,15cm,2cm,6cmD.8cm,4cm,1cm,3cm解析:将每组数据按从小到大的顺序排列,前两条线段的比和后两条线段的比相等的四条线段成比例.四个选项中,只有C项排列后有eq\f(2,5)=eq\f(6,15).应选C.方法总结:判断四条线段是否成比例的方法:(1)把四条线段按从小到大顺序排好,计算前两条线段的比和后两条线段的比,看是否相等作出判断;(2)把四条线段按从小到大顺序排好,计算前后两个数的积与中间两个数的积,看是否相等作出判断.【类型二】由线段成比例求线段的长三条线段的长分别为1cm,eq\r(2)cm,2cm,请你再给出一条线段,使得它的长与前面三条线段的长能够组成一个比例式.解:因为此题中没有明确告知是求1,eq\r(2),2的第四比例项,因此所添加的线段长可能是前三个数的第四比例项,也可能不是前三个数的第四比例项,因此应进行分类讨论.设要求的线段长为x,假设x∶1=eq\r(2)∶2,那么x=eq\f(\r(2),2);假设1∶x=eq\r(2)∶2,那么x=eq\r(2);假设1∶eq\r(2)=x∶2,那么x=eq\r(2);假设1∶eq\r(2)=2∶x,那么x=2eq\r(2).所以所添加的数有三种可能,可以是eq\f(\r(2),2),eq\r(2),或2eq\r(2).方法总结:假设使四个数成比例,那么应满足其中两个数的比等于另外两个数的比,也可转化为其中两个数的乘积恰好等于另外两个数的乘积.三、板书设计eq\a\vs4\al(比,例,线,段)eq\b\lc\{(\a\vs4\al\co1(线段的比:如果选用同一长度单位量得两条线段,AB,CD的长度分别是m,n,那么这两,条线段的比就是它们长度的比,,即AB∶CD=m∶n或写成\f(AB,CD)=\f(m,n),成比例线段:

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论