




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1-3解:系统的工作原理为:当流出增加时,液位降低,浮球降落,控制器通过移动气动阀门的开度,流入量增加,液位开始上。当流入量和流出量相等时达到平衡。当流出量减小时,系统的变化过程则相反。希望液位流出量高度液位高度控制器气动阀水箱+流入量-浮球图一1-4(1)非线性系统(2)非线性时变系统(3)线性定常系统(4)线性定常系统(5)线性时变系统(6)线性定常系统2-1解:显然,弹簧力为kx(t),根据牛顿第二运动定律有:F(t)−kx(t)=m移项整理,得机械系统的微分方程为:d2x(t)dt22mdx(t)+kx(t)=F(t)dt2对上述方程中各项求拉氏变换得:ms2X(s)+kX(s)=F(s)所以,机械系统的传递函数为:G(s)=X(s)=F(s)1ms2+k2-2解一:由图易得:i1(t)R1=u1(t)−u2(t)uc(t)+i1(t)R2=u2(t)duc(t)i1(t)=Cdt由上述方程组可得无源网络的运动方程为:C(R+R)du2(t)u(t)=CRdu1(t)u(t)12dt+22+1dt对上述方程中各项求拉氏变换得:C(R1+R2)sU2(s)+U2(s)=CR2sU1(s)+U1(s)所以,无源网络的传递函数为:G(s)=U2(s)=U1(s)1+sCR21+sC(R1+R2)解二(运算阻抗法或复阻抗法):U(s)1+R21+RCs2=Cs=2U(s)R+1+R1+(R+R)Cs1121Cs22-5解:按照上述方程的顺序,从输出量开始绘制系统的结构图,其绘制结果如下图所示:依次消掉上述方程中的中间变量X1,X2,X3,可得系统传递函数为:C(s)=R(s)G1(s)G2(s)G3(s)G4(s)1+G2(s)G3(s)G6(s)+G3(s)G4(s)G5(s)+G1(s)G2(s)G3(s)G4(s)[G7(s)−G8(s)]2-6解:①将G1(s)与G1(s)组成的并联环节和G1(s)与G1(s)组成的并联环节简化,它们的等效传递函数和简化结构图为:G12(s)=G1(s)+G2(s)G34(s)=G3(s)−G4(s)②将G12(s),G34(s)组成的反馈回路简化便求得系统的闭环传递函数为:2-7解:C(s)=R(s)G12(s)1+G12(s)G34(s)=G1(s)+G2(s)1+[G1(s)+G2(s)][G3(s)−G4(s)]由上图可列方程组:[E(s)G1(s)−C(s)H2(s)]G2(s)=C(s)R(s)−H1(s)C(s)G2(s)=E(s)联列上述两个方程,消掉E(s),得传递函数为:C(s)=R(s)G1(s)G2(s)1+H1(s)G1(s)+H2(s)G2(s)联列上述两个方程,消掉C(s),得传递函数为:E(s)=R(s)1+H2(s)G2(s)1+H1(s)G1(s)+H2(s)G2(s)2-8解:将①反馈回路简化,其等效传递函数和简化图为:0.41G(s)=2s+11+0.4*0.5=2s+115s+3将②反馈回路简化,其等效传递函数和简化图为:1G(s)=s+0.3s+1=5s+32231+0.45s+4.5s+5.9s+3.4(s+0.3s+1)(5s+3)将③反馈回路简化便求得系统的闭环传递函数为:0.7*(5s+3)Θo(s)=5s3+4.5s2+5.9s+3.4=3.5s+2.1Θi(s)1+0.7*Ks(5s+3)5s3+(4.5+3.5K)s2+(5.9+2.1K)s+3.45s3-3解:该二阶系统的最大超调量:σp=e−ζπ/1−ζ2*100%当σp=5%时,可解上述方程得:ζ=0.69当σp=5%时,该二阶系统的过渡时间为:ts≈3ζwn所以,该二阶系统的无阻尼自振角频率wn3-4解:≈3ζts=30.69*2=2.17由上图可得系统的传递函数:10*(1+Ks)C(s)=R(s)s(s+2)1+10*(1+Ks)s(s+2)==10*(Ks+1)s+2*(1+5K)s+10所以wn=10,ζwn=1+5K⑴若ζ=0.5时,K≈0.116所以K≈0.116时,ζ=0.5⑵系统单位阶跃响应的超调量和过渡过程时间分别为:σp=e−ζπ/1−ζ2*100%=e−0.5*3.14/1−0.52*100%≈16.3%ts=ζwn3=30.5*≈1.910⑶加入(1+Ks)相当于加入了一个比例微分环节,将使系统的阻尼比增大,可以有效地减小原系统的阶跃响应的超调量;同时由于微分的作用,使系统阶跃响应的速度(即变化率)提高了,从而缩短了过渡时间:总之,加入(1+Ks)后,系统响应性能得到改善。3-5解:由上图可得该控制系统的传递函数:C(s)=110K1R(s)二阶系统的标准形式为:C(s)R(s)s2+(10τ+1)s+10Kw2=ns2+2ζws+w2nn所以n=10K12ζwn=10τ+1由pσ=e−ζπ/π1−ζ2*100%tp=wn1−ζ2σp=9.5%tp=0.5可得ζ=0.62wn=10K1ζ=0.6wn=7.85由和2ζwn=10τ+1wn=7.85可得:K1=6.16τ=0.84ts≈3ζwn=0.643-6解:⑴列出劳斯表为:因为劳斯表首列系数符号变号2次,所以系统不稳定。⑵列出劳斯表为:因为劳斯表首列系数全大于零,所以系统稳定。⑶列出劳斯表为:因为劳斯表首列系数符号变号2次,所以系统不稳定。3-7解:系统的闭环系统传递函数:K(s+1)C(s)=R(s)=s(2s+1)(Ts+1)=1+K(s+1)s(2s+1)(Ts+1)K(s+1)K(s+1)s(2s+1)(Ts+1)+K(s+1)2Ts3+(T+2)s2+(K+1)s+K列出劳斯表为:s32TK+1s2T+2Ks1(K+1)(T+2)−2KTT+2s0KT>0,T+2>0,(K+1)(T+2)−2KTT+2>0,K>0T>0K>0,(K+1)(T+2)−2KT>0(K+1)(T+2)−2KT=(T+2)+KT+2K−2KT=(T+2)−KT+2K=(T+2)−K(T−2)>0K(T−2)<(T+2)3-9解:由上图可得闭环系统传递函数:C(s)=KK2K3232323R(s)(1+KKKa)s2−KKKbs−KKK代入已知数据,得二阶系统特征方程:(1+0.1K)s2−0.1Ks−K=0列出劳斯表为:s21+0.1K−Ks1−0.1Ks0−K可见,只要放大器−10<K<0,系统就是稳定的。3-12解:系统的稳态误差为:ess=lime(t)=limsE(s)=limsR(s)t→∞s→0s→01+G0(s)⑴G0(s)=10s(0.1s+1)(0.5s+1)系统的静态位置误差系数:K=limG(s)=lim10=∞ps→00s→0s(0.1s+1)(0.5s+1)系统的静态速度误差系数:K=limsG(s)=lim10s=10vs→00s→0s(0.1s+1)(0.5s+1)系统的静态加速度误差系数:K=lims2G(s)=lim10s2=0as→00s→0s(0.1s+1)(0.5s+1)当r(t)=1(t)时,R(s)=1sess=lims*1=0当r(t)=4t时,R(s)=s→01+10ss(0.1s+1)(0.5s+1)4s2e=lims*4=0.4sss→0s2当r(t)=t2时,R(s)=1+10s(0.1s+1)(0.5s+1)2s3ess=lims→01+s*2=∞10s3s(0.1s+1)(0.5s+1)当r(t)=1(t)+4t+t2时,R(s)=1+4+2ss2s33-14解:ess=0+0.4+∞=∞由于单位斜坡输入下系统稳态误差为常值=2,所以系统为I型系统设开环传递函数G(s)=Ks(s2+as+b)⇒K=0.5b闭环传递函数φ(s)=G(s)=K1+G(s)s3+as2+bs+KQs=−1±j是系统闭环极点,因此s3+as2+bs+K=(s+c)(s2+2s+2)=s3+(2+c)s2+(2c+2)s+2c⎧K=0.5b⎪K=2c⎨b=2c+2⇒⎪⎩a=2+c⎧K=2⎪a=3⎨b=4⎪⎩c=1所以G(s)=2。s(s2+3s+4)4-1jω[s]jω[s]k→∞k=0×k→∞k=00×σk=0×k→∞k→∞k=0σ0×(a)(b)jω[s]jω[s]σ××0×σ×0×(c)(d)4-2jω[s]×p=−10××p=0σp=0p1=0,p2=0,p3=−11.实轴上的根轨迹(−∞,−1)(0,0)12.n−m=33条根轨迹趋向无穷远处的渐近线相角为ϕ180°(2q+1)=±60°,180°a3(q=0,1)渐近线与实轴的交点为nm∑pi−∑zii=1j=10−0−11σa=3.系统的特征方程为n−m==−331+G(s)=1+K=0s2(s+1)即K=−s2(s+1)=−s3−s2dK=−3s2−2s=0dss(3s+2)=0根s1=0(舍去)s2=−0.6674.令s=jω代入特征方程1+G(s)=1+K=0s2(s+1)s2(s+1)+K=0(jω)2(jω+1)+K=0−ω2(jω+1)+K=0K−ω2−jω=0⎧K−ω2=0⎨⎩ω=0ω=0(舍去)与虚轴没有交点,即只有根轨迹上的起点,也即开环极点p1,2=0在虚轴上。25-1G(s)=50.25s+1G(jω)=50.25jω+1A(ω)=5(0.25ω)2+1ϕ(ω)=−arctan(0.25ω)输入r(t)=5cos(4t−30°)=5sin(4t+60°)ω=4A(4)=5(0.25*4)2+1=2.52ϕ(4)=−arctan(0.25*4)=−45°系统的稳态输出为c(t)=A(4)*5cos[4t−30°+ϕ(4)]=2.52*5cos(4t−30°−45°)=17.68cos(4t−75°)=17.68sin(4t+15°)sinα=cos(90°−α)=cos(α−90°)=cos(α+270°)5-3或者,c(t)=A(4)*5sin[4t+60°+ϕ(4)]=2.52*5sin(4t+60°−45°)=17.68sin(4t+15°)11(2)G(s)=(1+s)(1+2s)G(jω)=(1+jω)(1+j2ω)A(ω)=1(1+ω2)(1+4ω2)ϕ(ω)=−arctanω−arctan2ωϕ(ω)=−arctanω−arctan2ω=−90°arctanω+arctan2ω=90°ω=1/(2ω)ω2=1/2A(ω)=1=(1+1/2)(1+4*1/2)2=0.473与虚轴的交点为(0,-j0.47)jY(ω)0ω=∞-j0.47ω=01X(ω)ω1(3)G(s)=1s(1+s)(1+2s)G(jω)=1jω(1+jω)(1+j2ω)A(ω)=ω1(1+ω2)(1+4ω2)ϕ(ω)=−90°−arctanω−arctan2ωϕ(ω)=−90°−arctanω−arctan2ω=−180°arctanω+arctan2ω=90°ω=1/(2ω)ω2=1/2A(ω)=11/2(1+1/2)(1+4*1/2)=2=0.673与实轴的交点为(-0.67,-j0)-0.670ω=0.707ωω=0jY(ω)ω=∞X(ω)(4)G(s)=1s2(1+s)(1+2s)G(jω)=1(jω)2(1+jω)(1+j2ω)A(ω)=ω21(1+ω2)(1+4ω2)ϕ(ω)=−180°−arctanω−arctan2ωϕ(ω)=−180°−arctanω−arctan2ω=−270°arctanω+arctan2ω=90°ω=1/(2ω)ω2=1/2A(ω)=1=2(1/2)(1+1/2)(1+4*1/2)32=0.94与虚轴的交点为(0,j0.94)ω=0.707ω=0ω0.940jY(ω)ω=∞X(ω)25-4(2)ω1=0.5,ω2=1,k=1,υ=0L(ω)(dB)00.01-20dB0.10.5-20dB/decω110-40dB/dec-40dB(3)ω1=0.5,ω2=1,k=1,υ=1L(ω)(dB)-20dB/dec20dB-40dB/decω00.010.10.5110-20dB-40dB-60dB/dec(4)ω1=0.5,ω2=1,k=1,υ=2L(ω)(dB)60dB-40dB/dec40dB20dB-60dB/decω00.010.10.5110-20dB-40dB-80dB/dec5-6G(s)=1s−1是一个非最小相位系统3G(jω)=1=1(−1−jω)=1ej(−180o+arctgω)jω−11+ω21+ω2G(s)=1s+1是一个最小相位系统G(jω)=1=1(1−jω)=1e−jarctgωjω+11+ω21+ω25-8(a)ω=∞-10X(ω)系统开环传递函数有一极点在s平面的原点处,因此乃氏回线中半径为无穷小量ε的半圆弧对应的映射曲线是一个半径为无穷大的圆弧:ω:0−→0+;θ:-90°→0°→+90°;ϕ(ω):+90°→0°→-90°N=P-Z,Z=P-N=0-(-2)=2闭环系统有2个极点在右半平面,所以闭环系统不稳定(b)jY(ω)ω=∞-10X(ω)4系统开环传递函数有2个极点在s平面的原点处,因此乃氏回线中半径为无穷小量ε的半圆弧对应的映射曲线是一个半径为无穷大的圆弧:ω:0−→0+;θ:-90°→0°→+90°;ϕ(ω):+180°→0°→-180°N=P-Z,Z=P-N=0-0=0闭环系统有0个极点在右半平面,所以闭环系统稳定5-10KK2.28K(1)G(s)H(s)==Ts+1ϕ(ω)(°)12.28s+1=s+2.28ω1=2.280°ω−90°ϕ(ω)GsHs=K1=K1=2.28K(2)()()ϕ(ω)(°)sTs+1s12.28s+1s(s+2.28)−90°ω1=2.28ω−180°ϕ(ω)Kτs+11K0.5s+14K(s+0.5)(3)G(s)H(s)==sTs+1s1=s(s+2)222s+12L(ω)(dB)-40dB/dec-20dB/decaωb00.512-40dB/dec520lg1=a−20lgK+20lg1=40lg1−20lgK=20lg10.520lg(K)−1=20lg20.50.5K=1/2=0.50.5G(s)H(s)=4K(s+0.5)=2(s+0.5)s2(s+2)s2(s+2)−90°ϕ(ω)(°)ω1=0.5ω2=2ω−180°ϕ(ω)5-11ω=0−jY(ω)ω=+∞0ω=−∞(-1,j0)X(ω)ωω=0+G(s)H(s)=Ks(s+1)(3s+1)⇒G(jω)H(jω)=Kjω(jω+1)(3jω+1)ϕ(ω)=−90°−arctanω−arctan3ω=−180°arctanω+arctan3ω=90°ω=1/(3ω)ω2=1/3A(ω)=K1/3(1+1/3)(1+9*1/3)=3K=14Kc=4/3=1.3366-2(1)6ω2G(s)==nnns(s2+4s+6)s(s2+2ξωs+ω2)ω2=6ω=6=2.45,2ξω=4ξ=4=2=0.816nnn2ωn6K=1所以,ωc=120lgK=0⎛2ξω/ωϕ(ω)=−90°−arctgcn⎞⎛2*0.816*1/2.45⎞=−90°−arctgc⎜1−ω2/ω2⎟⎜1−1/2.452⎟⎝cn⎠⎝⎠=−90°−arctg⎛2*0.816*1/2.45⎞=−90°−arctg⎛0.666⎞=−90°−arctg0.7995⎜1−1/2.452⎟⎜0.833⎟⎝⎠⎝⎠=−90°−38.64°=−128.64°γ=180°+ϕ(ωc)=180°−128.64°=51.36°L(ω)(dB)50403020100-10-20-30-400.01-20dB/dec0.1ωn12.45ω10-60dB/dec(2)ω1=1,ω2=1/0.2=5⎛2ξω/ωϕ(ω)=−90°−arctgcn⎞⎛ω⎞⎛ω⎞+arctgc−arctgcc⎜1−ω2/ω2⎟⎜ω⎟⎜ω⎟⎝cn⎠⎝1⎠⎝2⎠=−128.64°+arctg⎛1⎞−arctg⎛1⎞=−128.64°+45°−11.31°=−94.95°⎝⎠⎝⎠γ=180°+ϕ(ωc)=180°−94.95°=85.05°1课后答案网L(ω)(dB)50403020100-10-200.01-20dB/dec0.1ωn12.4520dB/decGcω510-30-40-40dB/dec-60dB/dec-60dB/dec6-5(1)G(s)=10s(0.5s+1)(0.1s+1)ω=1,20lgK=20lg10=20dBω1=1/0.5=2,ω2=1/0.1=10ω1=2时,L(ω1)=20−20(lg2−lg1)=20lg10−20lg2=20lg5=14dBω2=10时,L(ω2)=14−40(lg10−lg2)=−13.96dB所以,ω1<ωc<ω2L(ω1)=40(lgωc−lg2)=40(lgωc/2)=14dBωc=4.48ϕ(ωc)=−90°−arc
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 休闲餐饮店铺租赁及装修设计合同
- 2025装修设计合同模板
- 2025资产评估师《经济法》考点承包合同
- 2025合同范本广告合作合同模板
- 2025餐饮公司劳动合同范本
- 理想赛道测试题及答案
- 月饼味道考试题目及答案
- 集邮学试题库及答案
- 医院停网试题及答案
- 罗甸人才面试题及答案
- GB/T 22875-2008卫生巾高吸收性树脂
- GB/T 20021-2005帆布芯耐热输送带
- GB/T 12830-2008硫化橡胶或热塑性橡胶与刚性板剪切模量和粘合强度的测定四板剪切法
- 《批判性思维》如何掌握批判性思维课件
- 模具保养记录表
- 形象店加盟管理方案
- T∕ZS 0128-2020 既有建筑结构安全智慧监测技术规程
- 教练技术LP三阶段教练手册
- 中医院重点专科“康复科”建设计划
- DB65∕T 4330-2021 公路融雪剂使用技术规范
- 无缝钢管常用尺寸规格表20978
评论
0/150
提交评论