




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Unit2:RationalFunctions
Lesson1:ReciprocalofaLinearFunctionUnit2:RationalFunctions
LesWhatisaRationalFunction?Anyfunctionoftheform:Wheref(x)andg(x)arepolynomialfunctionsBecausethedenominatorcanneverbezero,rationalfunctionshavepropertiesthatpolynomialfunctionsdonotWhatisaRationalFunction?AnWhatistheReciprocalofaLinearFunction?Wearegoingtostartbylookingatthesimplestrationalfunctions:ThisisthegeneralformforthereciprocalofalinearfunctionReciprocalmeansyouput“oneover”or,moresimply,you“flipit”WhatistheReciprocalofaLiExample1(a)UseyourTI-83ortheprogram“Graph”tographthefunction(b)Describetheendbehaviour(c)Whathappenswhenxgetscloseto½?Example1(a)UseyourTI-83orExample1:Solution(a)Example1:Solution(a)Example1:Solution(b)Asxgetslargeinboththepositiveandnegativedirections,thefunctiongetscloseto–butdoesnottouch–they-axis.Therefore,
Asx+∞,y0 Asx–∞,y0Example1:Solution(b)AsxgeExample1:SolutionStartontheleftofthegraphandmovetowardsx=½:they-valuesgetlargeandnegativeStartontherightofthegraphandmovetowardsx=½:they-valuesgetlargeandpositiveDenotedby:x½-,y-∞Denotedby:x½+,y+∞Approachx=½fromtherightApproachx=½fromtheleft(c)ThefunctionnevercrossesthisverticallineExample1:SolutionStartonthExample1:NotesAlinethatafunctiongetsclosetobutdoesnottouchiscalledanasymptoteThey-valuesgotclosetobutdidnottouchthey-axis(ahorizontalline)horizontalasymptoteistheliney=0Thereciprocalofalinearfunctionwillalwayshaveahorizontalasymptoteaty=0Thex-valuesgotclosetobutdidnottouchthelinex=½(averticalline)verticalasymptoteisthelinex=½OccursbecausethedenominatorcannotbezeroThereciprocalofalinearfunctionwillalwayshaveoneverticalasymptoteExample1:NotesAlinethataExample2(a)UseyourTI-83ortheprogram“Graph”tographthefunction(b)LabelthehorizontalandverticalasymptotesExample2(a)UseyourTI-83orExample2:SolutionThelinex=1(verticalasymptote)Theliney=0(horizontalasymptote)Example2:SolutionThelinexExample2:NotesInthisexamplethevalueofk(thenumberinfrontofx)isnegative:Asaresult,branchontheleftoftheverticalasymptoteisabovethex-axisandthebranchontherightbranchisbelowitWhenkispositivethebranchontheleftisbelowthex-axisandthebranchontherightbranchisaboveitExample2:NotesInthisexamplExample3Considerthefunction(a)Determinetheequationsoftheasymptotes(b)StatethedomainandrangeExample3ConsiderthefunctionExample3:SolutionThehorizontalasymptoteistheliney=0
See“Example1:Notes” Theverticalasymptoteoccursbecausethedenominatorcannotbezero.WeneedtofindthevalueofxthatmakesthedenominatorzeroTherefore,theverticalasymptoteisthelinex=2Example3:SolutionThehorizonExample3:Solution(b)Thedomaintellsuswhatvaluesofxthefunctioncanbeevaluatedat.Theonlyvalueofxwecan’thaveis2.Therefore, Therangetellsuswhatvaluesofythefunctioncanhave.Theonlyvalueofywewillnevergetis0.Therefore,Example3:Solution(b)ThedomExample3:NotesOurverticalasymptotewasthelinex=2andourdomainwasTheverticalasymptotegivesyouthedomainOurhorizontalasymptotewastheliney=0andourrangewasThehorizontalasymptotegivesyoutherangeExample3:NotesOurverticalaExample4Determinethex-andy-interceptsofExample4Determinethex-andExample4:SolutionThex-interceptisthevalueofxwheny=0:Thereisnovalueofxthatmakesthistrue.Thereisnox-interceptThey-interceptisthevalueofywhenx=0:They-interceptisExample4:SolutionThex-interSummaryThereciprocalofalinearfunctionhastheformTheverticalasymptoteisfoundbysettingthedenominatorequaltozeroandsolvingforxThedenominatorCANNOTbezeroThedomainisallvaluesofxexceptthisoneThehorizontalasymptoteisthex-axis(theliney=0)TherangeisallvaluesofyexceptzeroThesefunctionshavetwobranches–oneontheleftoftheverticalasymptoteandoneontherightk>0:leftbranchisbelowthex-axis,therightisaboveK<0:leftbranchisabovethex-axis,therightisbelowSummaryThereciprocalofalinPracticeProblemsP.153-154#2,3,5,7-9Note:For#7don’tbotherwithasketch.Justcalculatethey-interceptandstatethedomain,rangeandasymptotes.PracticeProblemsP.153-154#2Unit2:RationalFunctions
Lesson1:ReciprocalofaLinearFunctionUnit2:RationalFunctions
LesWhatisaRationalFunction?Anyfunctionoftheform:Wheref(x)andg(x)arepolynomialfunctionsBecausethedenominatorcanneverbezero,rationalfunctionshavepropertiesthatpolynomialfunctionsdonotWhatisaRationalFunction?AnWhatistheReciprocalofaLinearFunction?Wearegoingtostartbylookingatthesimplestrationalfunctions:ThisisthegeneralformforthereciprocalofalinearfunctionReciprocalmeansyouput“oneover”or,moresimply,you“flipit”WhatistheReciprocalofaLiExample1(a)UseyourTI-83ortheprogram“Graph”tographthefunction(b)Describetheendbehaviour(c)Whathappenswhenxgetscloseto½?Example1(a)UseyourTI-83orExample1:Solution(a)Example1:Solution(a)Example1:Solution(b)Asxgetslargeinboththepositiveandnegativedirections,thefunctiongetscloseto–butdoesnottouch–they-axis.Therefore,
Asx+∞,y0 Asx–∞,y0Example1:Solution(b)AsxgeExample1:SolutionStartontheleftofthegraphandmovetowardsx=½:they-valuesgetlargeandnegativeStartontherightofthegraphandmovetowardsx=½:they-valuesgetlargeandpositiveDenotedby:x½-,y-∞Denotedby:x½+,y+∞Approachx=½fromtherightApproachx=½fromtheleft(c)ThefunctionnevercrossesthisverticallineExample1:SolutionStartonthExample1:NotesAlinethatafunctiongetsclosetobutdoesnottouchiscalledanasymptoteThey-valuesgotclosetobutdidnottouchthey-axis(ahorizontalline)horizontalasymptoteistheliney=0Thereciprocalofalinearfunctionwillalwayshaveahorizontalasymptoteaty=0Thex-valuesgotclosetobutdidnottouchthelinex=½(averticalline)verticalasymptoteisthelinex=½OccursbecausethedenominatorcannotbezeroThereciprocalofalinearfunctionwillalwayshaveoneverticalasymptoteExample1:NotesAlinethataExample2(a)UseyourTI-83ortheprogram“Graph”tographthefunction(b)LabelthehorizontalandverticalasymptotesExample2(a)UseyourTI-83orExample2:SolutionThelinex=1(verticalasymptote)Theliney=0(horizontalasymptote)Example2:SolutionThelinexExample2:NotesInthisexamplethevalueofk(thenumberinfrontofx)isnegative:Asaresult,branchontheleftoftheverticalasymptoteisabovethex-axisandthebranchontherightbranchisbelowitWhenkispositivethebranchontheleftisbelowthex-axisandthebranchontherightbranchisaboveitExample2:NotesInthisexamplExample3Considerthefunction(a)Determinetheequationsoftheasymptotes(b)StatethedomainandrangeExample3ConsiderthefunctionExample3:SolutionThehorizontalasymptoteistheliney=0
See“Example1:Notes” Theverticalasymptoteoccursbecausethedenominatorcannotbezero.WeneedtofindthevalueofxthatmakesthedenominatorzeroTherefore,theverticalasymptoteisthelinex=2Example3:SolutionThehorizonExample3:Solution(b)Thedomaintellsuswhatvaluesofxthefunctioncanbeevaluatedat.Theonlyvalueofxwecan’thaveis2.Therefore, Therangetellsuswhatvaluesofythefunctioncanhave.Theonlyvalueofywewillnevergetis0.Therefore,Example3:Solution(b)ThedomExample3:NotesOurverticalasymptotewasthelinex=2andourdomainwasTheverticalasymptotegivesyouthedomainOurhorizontalasymptotewastheliney=0andourrangewasThehorizontalasymptotegivesyoutherangeExample3:NotesOurverticalaExample4Determinethex-andy-interceptsofExample4Determinethex-andExample4:SolutionThex-interceptisthe
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年中国橄榄球衫和短裤行业市场分析及投资价值评估前景预测报告
- 2024-2025学年高中政治 专题3 第1节 经济生活与道德建设说课稿(选修6)
- 2025年工业厂房装配式结构设计安全防护评估报告
- 2025年中国复合材料耗材行业市场分析及投资价值评估前景预测报告
- 2025年中国风机叶片增强材料行业市场分析及投资价值评估前景预测报告
- 2025年中国分体线圈超导磁体行业市场分析及投资价值评估前景预测报告
- 劳动项目一 煮饺子教学设计小学劳动人教版五年级下册-人教版
- 第二课 展示自己的职业风采教学设计-2025-2026学年中职思想政治职业道德与法律(第3版)人教版
- 第十一章第二节《功率》教学设计2023-2024学年人教版八年级物理下册
- 高二语文学考试卷及答案
- (二模)新疆维吾尔自治区2025年普通高考第二次适应性检测 英语试卷(含答案详解)
- 2024-2025学年江苏省苏州市高二上册10月月考数学学情检测试题
- 2025年度会计代理记账机构员工劳动合同范本
- 《慢性肾脏病相关心肌病综合管理中国专家共识(2024版)》解读
- 牛津译林版九年级英语上学期期中热点题型专练刷题03名校选词填空20篇(原卷版+解析)
- DB11T 2032-2022 工程建设项目多测合一技术规程
- 中小学教师职称评审讲课答辩英语学科全英答辩题目汇编(附汉语翻译)
- HG∕T 5087-2016 2,6-二叔丁基苯酚
- (完整)马克思主义政治经济学习题及参考答案
- 大规模模型蒸馏技术
- 12、口腔科诊疗指南及技术操作规范
评论
0/150
提交评论