




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Unit4:TrigonometricFunctions
Lesson2:SinusoidalFunctionsUnit4:TrigonometricFunctionSinusoidagraphwhoseshapelookslikethegraphofsin(x)sin,cosandtransformationsofthesefunctionsareallsinusoids(AKAsinusoidalfunctions) SinusoidagraphwhoseshapeloTransformationsInLesson1,welookedatthedifferentfunctiontransformationsWecansummarizethesewiththegeneralfunctiontransformation
Ifweapplythistothesineandcosinefunctions,wegetTransformationsInLesson1,weTransformationsForsimplicity,considerthetransformedsinefunction:verticalstretches,compressions&reflectionsGivesyoutheamplitudeHorizontalstretches,compressions&reflectionsGivesyoutheperiod:ShiftsupordownGivesyoutheaxisofcurveShiftsleftorrightCalledthephaseshiftTransformationsForsimplicity,Example1Whatistheamplitude,period,phaseshiftandaxisofcurveofExample1WhatistheamplitudeExample1:SolutionIngeneral:Wehave:a=3c=–1k=2theamplitudeis3theaxisofcurveisy=–1d=thephaseshiftistheperiodisExample1:SolutionIngeneral:Example2Whatistheamplitude,period,phaseshiftandverticalshiftofExample2WhatistheamplitudeExample2:SolutionIngeneral:Wehave:FACTOR!a=–2c=6theamplitudeis2theaxisofcurveisy=6k=0.5IgnorethenegativeExample2:SolutionIngeneral:Example2:NotesThetipoftheday:Alwaysfactorthecoefficientonthex-termtocorrectlyidentifythetransformationsIfyoudon’t,yourphaseshiftwillbeincorrectReminder:Theamplitudeistheverticaldistancefromtheaxisofcurvetothemaximumvalue.So,althoughthevalueofacanbenegative,theamplitudeisalwayspositiveExample2:NotesThetipoftheExample3Whatistheequationofthecosinefunctionafterithasbeenstretchedsothatitsperiodis,itsamplitudeis8andithasexperiencedaphaseshiftoftotheleftandhasbeenshiftedup1unitExample3WhatistheequationExample3:Solutionamplitudeis8phaseshiftis(left)ShifteduponeunitTheperiodisa=8d=c=1Example3:SolutionamplitudeiExample4Whatistheequationofthesinefunctionafterithasbeenstretchedsothatitsperiodis4,ithasexperiencedaphaseshiftoftotherightandithasbeenreflectedinthex-axisExample4WhatistheequationExample4:SolutionamplitudeisunchangedFunctionisreflectedinthex-axisphaseshiftis(right)ThereisnoverticalshiftTheperiodis4a=1d=c=0a=-1Example4:SolutionamplitudeiExample4:NotesItispossiblefortheperiodtonotbeamultipleofπIfthisisthecase,thek-valuewillbeintermsofπTheperiodisrarelyamultipleofπinreal-worldapplicationsEx.motionofapendulum,theheightofthetides,voltageinanACcircuitExample4:NotesItispossibleTheGraphsofsin&cosInordertounderstandtransformationsofsinandcos,it’scrucialfortoknowwhatf(x)=sinxandf(x)=cosxlooklikeTohelpyouwiththis,alwaysthinkofthefive“keypoints”ofoneperiodforeachfunction:sinhasthreezeroes,onemaxandonemin.Eachperiodstartsontheaxisofcurvecoshastwozeroes,twomaxandonemin.EachperiodstartsatthemaximumBecausethesefunctionsareperiodicifyouneedmorethanoneperiod,simplyrepeatthepatternTheGraphsofsin&cosInordeHowtoDeterminetheEquationFromaGraphDrawahorizontallinethatdividesthefunctioninhalf(axisofcurve)Locatethestartingpointofasine/cosineperiodandmarkthispointwithanA.Locatetheendingpointofasine/cosineperiodandmarkthispointwithaB.Determinethehorizontaldistancebetweenthesetwopoints(theperiod).Determinetheverticaldistancefromtheaxisofcurvetothemaximumvalue(amplitude)Becausethex-coordinateofthestartingpointforasine/cosineperiodiszero,thex-coordinateofAgivesyouthephaseshiftHowtoDeterminetheEquationExample5Useasinecurvetodeterminetheequationofthefunctiongivenbelow-12Example5UseasinecurvetodExample5:SolutionAB12-12Axisofcurveis-9PeriodisπAmplitudeis3PhaseshiftisExample5:SolutionAB12-12AxisExample5:Solutionamplitudeis3phaseshiftis(right)Axisofcurveis-9Theperiodisa=3d=c=-9Example5:SolutionamplitudeiExample6RepeatExample5,butthistimeuseacosinecurvetodeterminetheequationExample6RepeatExample5,butExample6:SolutionAB12-12Axisofcurveis-9PeriodisπAmplitudeis3PhaseshiftisExample6:SolutionAB12-12AxisExample6:Solutionamplitudeis3phaseshiftis(left)Axisofcurveis-9Theperiodisa=3d=c=-9Example6:SolutionamplitudeiExample6:NotesWhenweusedacosinetomodelthefunctioninExample5,theonlychangewastothephaseshift.Thereasonforthis,isthatsineandcosinearethesamefunction–theonlydifferenceisaphaseshift:f(x)=sinxf(x)=cosxorExample6:NotesWhenweusedSummaryAsinusoidalfunctionisatransformedsineorcosinefunctionand,ingeneral,hastheequation:YoucandeterminetheequationofasinusoidusingasineorcosinefunctiongivenalistofpropertiesoragrapharelatestotheamplitudeamplitudeMUSTbepositivekrelatestotheperiodPerioddoesnotneedtobeintermsofπdisthephaseshiftcistheverticalshift(axisofcurve)Don’tforgettofactoroutwhat’sinfrontofx!f(x)=sinxandf(x)=cosxdifferonlybyaphaseshiftofSummaryAsinusoidalfunctioniPracticeProblemsP.275-277#1-6,8-13Note:Anygraphs/sketchescanbedoneusingyourTI-83ortheprogram“Graph”PracticeProblemsP.275-277#1Unit4:TrigonometricFunctions
Lesson2:SinusoidalFunctionsUnit4:TrigonometricFunctionSinusoidagraphwhoseshapelookslikethegraphofsin(x)sin,cosandtransformationsofthesefunctionsareallsinusoids(AKAsinusoidalfunctions) SinusoidagraphwhoseshapeloTransformationsInLesson1,welookedatthedifferentfunctiontransformationsWecansummarizethesewiththegeneralfunctiontransformation
Ifweapplythistothesineandcosinefunctions,wegetTransformationsInLesson1,weTransformationsForsimplicity,considerthetransformedsinefunction:verticalstretches,compressions&reflectionsGivesyoutheamplitudeHorizontalstretches,compressions&reflectionsGivesyoutheperiod:ShiftsupordownGivesyoutheaxisofcurveShiftsleftorrightCalledthephaseshiftTransformationsForsimplicity,Example1Whatistheamplitude,period,phaseshiftandaxisofcurveofExample1WhatistheamplitudeExample1:SolutionIngeneral:Wehave:a=3c=–1k=2theamplitudeis3theaxisofcurveisy=–1d=thephaseshiftistheperiodisExample1:SolutionIngeneral:Example2Whatistheamplitude,period,phaseshiftandverticalshiftofExample2WhatistheamplitudeExample2:SolutionIngeneral:Wehave:FACTOR!a=–2c=6theamplitudeis2theaxisofcurveisy=6k=0.5IgnorethenegativeExample2:SolutionIngeneral:Example2:NotesThetipoftheday:Alwaysfactorthecoefficientonthex-termtocorrectlyidentifythetransformationsIfyoudon’t,yourphaseshiftwillbeincorrectReminder:Theamplitudeistheverticaldistancefromtheaxisofcurvetothemaximumvalue.So,althoughthevalueofacanbenegative,theamplitudeisalwayspositiveExample2:NotesThetipoftheExample3Whatistheequationofthecosinefunctionafterithasbeenstretchedsothatitsperiodis,itsamplitudeis8andithasexperiencedaphaseshiftoftotheleftandhasbeenshiftedup1unitExample3WhatistheequationExample3:Solutionamplitudeis8phaseshiftis(left)ShifteduponeunitTheperiodisa=8d=c=1Example3:SolutionamplitudeiExample4Whatistheequationofthesinefunctionafterithasbeenstretchedsothatitsperiodis4,ithasexperiencedaphaseshiftoftotherightandithasbeenreflectedinthex-axisExample4WhatistheequationExample4:SolutionamplitudeisunchangedFunctionisreflectedinthex-axisphaseshiftis(right)ThereisnoverticalshiftTheperiodis4a=1d=c=0a=-1Example4:SolutionamplitudeiExample4:NotesItispossiblefortheperiodtonotbeamultipleofπIfthisisthecase,thek-valuewillbeintermsofπTheperiodisrarelyamultipleofπinreal-worldapplicationsEx.motionofapendulum,theheightofthetides,voltageinanACcircuitExample4:NotesItispossibleTheGraphsofsin&cosInordertounderstandtransformationsofsinandcos,it’scrucialfortoknowwhatf(x)=sinxandf(x)=cosxlooklikeTohelpyouwiththis,alwaysthinkofthefive“keypoints”ofoneperiodforeachfunction:sinhasthreezeroes,onemaxandonemin.Eachperiodstartsontheaxisofcurvecoshastwozeroes,twomaxandonemin.EachperiodstartsatthemaximumBecausethesefunctionsareperiodicifyouneedmorethanoneperiod,simplyrepeatthepatternTheGraphsofsin&cosInordeHowtoDeterminetheEquationFromaGraphDrawahorizontallinethatdividesthefunctioninhalf(axisofcurve)Locatethestartingpointofasine/cosineperiodandmarkthispointwithanA.Locatetheendingpointofasine/cosineperiodandmarkthispointwithaB.Determinethehorizontaldistancebetweenthesetwopoints(theperiod).Determinetheverticaldistancefromtheaxisofcurvetothemaximumvalue(amplitude)Becausethex-coordinateofthestartingpointforasine/cosineperiodiszero,thex-coordinateofAgivesyouthephaseshiftHowtoDeterminetheEquationExample5Useasinecurvetodeterminetheequationofthefunctiongivenbelow-12Example5UseasinecurvetodExample5:SolutionAB12-12Axisofcurveis-9PeriodisπAmplitudeis3PhaseshiftisExample5:SolutionAB12-12AxisExample5:Solutionamplitudeis3phaseshiftis(right)Axisofcurveis-9Theperiodisa=3d=c=-9Example5:SolutionamplitudeiExample6RepeatExample5,butthistimeuseacosinecurvetodeterminetheequationExample6RepeatExample5,butExample6:SolutionAB12-12Axisofcurveis-9PeriodisπAmplitudeis3Pha
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024-2025学年初一英语学业评价计划
- 阅读马拉松活动组织方案
- 桃花源记:古典文化与现实生活融合教学教案
- 一年级下册科学探索活动计划
- 护理岗位竞聘优势
- 2025学年语文教学活动安排
- 关爱学生心理辅导机制计划
- 六年级写人作文妈妈800字(13篇)
- 三位数除以两位数能力练习口算题带答案
- 小学生绿色校园建设计划
- 青铜器的纹样课件
- 《献给阿尔吉侬的花束》读后感优秀5篇
- 中医临床路径
- 2023年云南省肿瘤医院医护人员招聘笔试题库及答案解析
- 辐射及其安全防护(共38张PPT)
- 初三中考宣誓誓词82060
- 触电事故桌面推演方案
- 护理风险评估及填写要求
- 《中兴通讯绩效管理制度》-人事制度表格【管理资料】
- 铁路工务技术手册
- (完整版)硬件测试规范
评论
0/150
提交评论