版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
关于几何图形中的分类讨论第一页,共四十五页,2022年,8月28日分类讨论:根据某一标准将数学对象分为不同种类,然后分别对它们进行讨论,得出各种情况下相应结论的数学思想方法。分类讨论是一种重要的数学思想方法也是一种解题的策略!在几何图形中,我们常根据位置关系不确定进行分类。第二页,共四十五页,2022年,8月28日考考你,快速做一做1、A、B是⊙O上的两点,且∠AOB=1360,C是⊙O上不与A、B重合的任意一点,则∠ACB的度数是___________.2、已知横截面直径为100cm的圆形下水道,如果水面宽AB为80cm,则下水道中水的最大深度
.3、已知⊙O1与⊙O2相切,⊙O1的半径为3cm,⊙O2的半径为2cm,则O1O2的长______cm.4、如图,已知在直角坐标系中,半径为2的圆的圆心坐标为(3,-3),当该圆向上平移
个单位时,它与x轴相切.第三页,共四十五页,2022年,8月28日点在优弧或劣弧1、若A、B是⊙O上的两点,且∠AOB=1360,C是⊙O上不与A、B重合的任意一点,则∠ACB的度数是_________.OBAC1C2点在圆上位置不确定第四页,共四十五页,2022年,8月28日2、已知横截面直径为100cm的圆形下水道,如果水面宽AB为80cm,则下水道中水的最大深度.弦与圆心的位置关系不确定20cm或80cm第五页,共四十五页,2022年,8月28日3、已知⊙O1与⊙O2相切,⊙O1的半径为3cm,⊙O2的半径为2cm,则O1O2的长是_______cm.圆与圆相切的位置关系不确定·O2O1·O1·O21或5第六页,共四十五页,2022年,8月28日4、如图,已知在直角坐标系中,半径为2的圆的圆心坐标为(3,-3),当该圆向上平移______个单位时,它与x轴相切.
1或5第七页,共四十五页,2022年,8月28日归纳小结点、弦、圆与圆位置不确定需要分类讨论分类思想在动态问题中运用第八页,共四十五页,2022年,8月28日5、若⊙O1与⊙O2相切,圆心距为6cm,⊙O1的半径为10cm,则⊙O2的半径___cm。6、如图,在7×4的方格(每个方格的边长为1个单位长)中,⊙A的半径为1,⊙B的半径为2,将⊙A由图示位置向右平移______个单位长后,⊙A与⊙B相切.更上一层楼AB第九页,共四十五页,2022年,8月28日5、若⊙O1与⊙O2相切,圆心距为6cm,⊙O1的半径为10cm,则⊙O2的半径_________。·O1·O2·O2·O14cm或16cm第十页,共四十五页,2022年,8月28日圆与圆相切的位置关系不确定6、如图,在7×4的方格(每个方格的边长为1个单位长)中,⊙A的半径为1,⊙B的半径为2,将⊙A由图示位置向右平移_____
个单位长后,⊙A与⊙B相切.1,3或5AB第十一页,共四十五页,2022年,8月28日xy4-37、直线(1)求M,N两点的坐标;(2)如果点P在x轴上,以点P为圆心,3为半径的圆与直线相切,求点P的坐标.与x轴,y轴分别交于点M,N0MNP1AP2B第十二页,共四十五页,2022年,8月28日解:①当P1点在x轴上,并且在M点的左侧时,设⊙P1与直线上切于点A,连P1A.
则P1A⊥MN,
∵OA=P1A=3,∴∴P1M=MN=5,∴OP1=1.
∴P1点坐标是(-1,0);
②当P2点在x轴上,并且在M点的右侧时,设⊙P2与直线上切于点B,连P2B.
则P2B⊥MN,
∵OA=P2B=3,∴∴P2M=MN=5,∴OP2=9.
∴P1点坐标是(9,0);第十三页,共四十五页,2022年,8月28日xy4-37、直线(1)求M,N两点的坐标;(2)如果点P在坐标轴上,以点P为圆心,3为半径的圆与直线相切,求点P的坐标.与x轴,y轴分别交于点M,N尝试一下,解决下列的问题0第十四页,共四十五页,2022年,8月28日xy4-37、直线(1)求M,N两点的坐标;(2)如果点P在坐标轴上,以点P为圆心,3为半径的圆与这条直线相切,问符合条件的点P有几个?
与x轴,y轴分别交于点M,N0变式请写出它们的坐标。第十五页,共四十五页,2022年,8月28日练.
如图,点P为正比例函数图象上的一个动点,的半径为3,设点P的坐标为.求与直线相切时点的坐标.第十六页,共四十五页,2022年,8月28日8、如图,点A,B在直线MN上,AB=11厘米,⊙A,⊙B的半径均为1厘米.⊙A以每秒2厘米的速度自左向右运动,与此同时,⊙B的半径也不断增大,其半径r(厘米)与时间t(秒)之间的关系式为r=1+t(t≥0).(1)试写出点A,B之间的距离d(厘米)与时间t(秒)之间的函数表达式;(2)问点A出发后多少秒两圆相切?第十七页,共四十五页,2022年,8月28日解:(1)①当0≤t≤5.5时,点A在点B的左侧,此时函数表达式为d=11-2t,
②当t>5.5时,点A在点B的右侧,故函数表达式为d=2t-11;
(2)解:两圆相切可分为如下四种情况:
①当两圆第一次外切,由题意,
可得11-2t=1+1+t,t=3;
②当两圆第一次内切,由题意,
可得11-2t=1+t-1,t=
③当两圆第二次内切,由题意,可得2t-11=1+t-1,t=11;
④当两圆第二次外切,由题意,可得2t-11=1+t+1,t=13.
所以,点A出发后3秒、秒、11秒、13秒时两圆相切.第十八页,共四十五页,2022年,8月28日通过本节课的学习你有哪些收获?与圆有关的分类讨论,常根据位置关系不确定进行分类:1、点与圆的位置关系不确定2、点在圆上位置不确定3、两弦与圆心的位置关系不确定4、圆与圆相切的位置关系不确定第十九页,共四十五页,2022年,8月28日作业复习。强化练习卷。第二十页,共四十五页,2022年,8月28日下课了!再见!谢谢指导!第二十一页,共四十五页,2022年,8月28日第二十二页,共四十五页,2022年,8月28日O1、若点P是⊙O所在平面内的一点,到⊙O上各点最小距离是1,到⊙O的最大距离是7,该圆的半径为____________
OPPABAB3
点与圆的位置关系不确定点与圆4或
第二十三页,共四十五页,2022年,8月28日2、弦AB把⊙O的圆周分成1:2,则弦AB所对的圆周角的度数是
。
或点在圆上位置不确定ABCC’点与圆yx变式:如图,已知A、B两点的坐标分别为、(0,2),P是△AOB外接圆上的一点,且∠AOP=30°,则点P的坐标为___________BAP1P2OQ或H第二十四页,共四十五页,2022年,8月28日已知⊙O的半径为5cm,AB、CD是⊙O的弦,且AB=6cm,CD=8cm,AB∥CD,则AB与CD之间的距离为
;1cmOBDCAOBDCA线与圆7cm或第二十五页,共四十五页,2022年,8月28日OO变式:已知:⊙O半径为1,AB、AC⊙O是弦,AB=,AC=,∠BAC的度数为______ABCABC两弦与圆心的位置关系不确定或线与圆DD第二十六页,共四十五页,2022年,8月28日如图,在的网格图中(每个小正方形的边长均为1个单位),的半径为1,的半径为2,要使与静止的相切,那么由图示位置需向右平移
个单位.圆与圆2,4,6或8圆与圆相切的位置关系不确定第二十七页,共四十五页,2022年,8月28日
相距2cm的两个点A、B在直线l上.它们分别以2cm/s和1cm/s的速度在直线l上同时向右平移,经过t(s)后点A,B分别平移到点A1,B1的位置,⊙A1的半径为1cm,以B为圆心BB1为半径作⊙B.(1)试写出点A1B之间的距离d(cm)与时间t(s)之间的函数表达式;(2)问A出发后多少秒,⊙A1恰好与⊙B相切.圆与圆第二十八页,共四十五页,2022年,8月28日A1B1A1B1
相距2cm的两个点A、B在直线l上.它们分别以2cm/s和1cm/s的速度在直线l上同时向右平移,经过t(s)后点A,B分别平移到点A1,B1的位置,⊙A1的半径为1cm,以B为圆心BB1为半径作⊙B.(2)问A出发后多少秒,⊙A1恰好与⊙B相切.当0<t≤1时第二十九页,共四十五页,2022年,8月28日A1B1
相距2cm的两个点A、B在直线l上.它们分别以2cm/s和1cm/s的速度在直线l上同时向右平移,经过t(s)后点A,B分别平移到点A1,B1的位置,⊙A1的半径为1cm,以B为圆心BB1为半径作⊙B.(2)问A出发后多少秒,⊙A1恰好与⊙B相切.当t>1时第三十页,共四十五页,2022年,8月28日如图,在Rt△ABC中,∠ACB=90°,AC=6㎝,BC=8㎝,P为BC的中点.动点Q从点P出发,沿射线PC方向以2㎝/s的速度运动,以P为圆心,PQ长为半径作圆.设点Q运动的时间为ts.⑴当t=1.2时,判断直线AB与⊙P的位置关系,并说明理由;⑵已知⊙O为△ABC的外接圆,若⊙P与⊙O相切,求t的值.圆与圆第三十一页,共四十五页,2022年,8月28日
如图,点A,B在直线MN上,AB=11厘米,⊙A,⊙B的半径均为1厘米.⊙A以每秒2厘米的速度自左向右运动,与此同时,⊙B的半径也不断增大,其半径r(厘米)与时间t(秒)之间的关系式为r=1+t(t≥0).(1)试写出点A,B之间的距离d(厘米)与时间t(秒)之间的函数表达式;(2)问点A出发后多少秒两圆相切?试一试第三十二页,共四十五页,2022年,8月28日
根据研究对象的本质属性的差异,将所研究的问题分为不同种类的思想叫做分类思想.将事物进行分类,然后对划分的每一类分别进行研究和求解的方法叫做分类讨论.
第三十三页,共四十五页,2022年,8月28日分类思想是我们数学中一种非常重要,也是很常见的思想,在中考中,命题者经常利用分类讨论题来加大试卷的区分度.解答分类讨论问题时,我们的基本方法和步骤是:首先要确定讨论对象以及所讨论对象的全体的范围;其次确定分类标准,正确进行合理分类,即标准统一、不漏不重、分类互斥(没有重复);再对所分类逐步进行讨论,分级进行,获取阶段性结果;最后进行归纳小结,综合得出结论.第三十四页,共四十五页,2022年,8月28日引起分类讨论的几个主要原因
第三十五页,共四十五页,2022年,8月28日1.问题所涉及到的数学概念是分类进行定义的.如|a|的定义分a>0、a=0、a<0三种情况.这种分类讨论题型可以称为概念型.
第三十六页,共四十五页,2022年,8月28日2.问题中涉及到的数学定理、公式和运算性质、法则有范围或者条件限制,或者是分类给出的.如讨论一次函数y=kx+b(k≠0)的增减性,要分k<0和k>0两种情况.这种分类讨论题型可以称为性质型.第三十七页,共四十五页,2022年,8月28日3.解含有字母系数(参数)的题目时,必须根据参数的不同取值范围进行讨论.如解不等式ax>2时分a>0、a=0和a<0三种情况讨论.这称为含参型.
第三十八页,共四十五页,2022年,8月28日4.某些不确定的数量、不确定的图形的形状或位置、不确定的结论等,都要通过分类讨论,保证其完整性,使之具有确定性.第三十九页,共四十五页,2022年,8月28日分析:在有关动点的几何问题中,由于图形的不确定性,我们常常需要针对各种可能出现的图形对每一种可能的情形都分别进行研究和求解.换句话说,分类思想在动态问题中运用最为广泛.第四十页,共四十五页,2022年,8月28日3.如图,直线AB经过圆O的圆心,与圆O交于A、B两点,点C在O上,且∠AOC=300,点P是直线AB上的一个动点(与点O不重合),直线PC与圆O相交于点Q,问点P在直线AB的什么位置时,QP=QO?这样的点P有几个?并相应地求出∠OCP的度数。ABCPOQ解:∵OQ=OC,OQ=QP∴∠OQC=∠OCQ,∠QOP=∠QPO设∠OCP=x0,则有:(2)如果点P在线段OB上,显然有PQ>OQ,所以点P不可能在线段OB上。(1)如上图,当点P在线段OA上时,∵∠OQC=∠OCP=x,∴∠QPO=(1800-∠OQP)=(1800-x)又∠QPO=∠OCP+∠COP,(1800-x)=x+300,解得x=400,即∠OCP=400第四十一页,共四十五页,2022年,8
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026春招:药明康德面试题及答案
- 贺立平课件教学课件
- 贺卡介绍课件
- 货运驾驶人安全培训记录课件
- 货运安全常识培训总结课件
- 医疗保险市场潜力与挑战
- 医疗器械研发与知识产权保护
- 医院康复科患者护理礼仪
- 医疗护理技术操作规范与考核标准
- 疼痛管理策略与实践
- 河南洛阳炼化宏达实业有限责任公司招聘笔试题库2026
- 仓库租赁合同协议书
- 2025年母子公司间投资合同范本
- 2025山西朔州市公安局招聘留置看护岗位辅警260人笔试考试参考试题及答案解析
- 医院安全生产下一步工作计划
- 实验室质控考核管理
- 2025青海省生态环保产业有限公司招聘11人笔试考试参考题库及答案解析
- 2026梦工场招商银行太原分行寒假实习生招聘考试笔试备考题库及答案解析
- 1、汽车配线、电子连接器及保护装置
- 小学五年级那一刻我长大了600字
- FZ/T 10007-2018棉及化纤纯纺、混纺本色纱线检验规则
评论
0/150
提交评论