对磨轮剖面资料的建模分析_第1页
对磨轮剖面资料的建模分析_第2页
对磨轮剖面资料的建模分析_第3页
对磨轮剖面资料的建模分析_第4页
对磨轮剖面资料的建模分析_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

对磨轮剖面资料的建模分析江南大学信计1103班陈鹭1301110301摘要:本文借助Eviews6.0软件使用B-J方法与P-W方法建立关于磨轮剖面资料的数学模型。使用B-J方法建模得到的结果为:X=0.944259X尸】。模型的适应性检验结果表明模型适合,且准确性较好。再通过P-W方法建模,ARMA(2,1)的模型是比较适合的,通过P值判断删去不显著的参数得到最终的模型为:X=1.210498X-0.406213X+a+0.694062a,。一、使用B-j方法建立数'亭模'型I1.1对原始数据平稳化的判断使用Eviews6.0软件做出原始数据的趋势图,如图(1)所示。由原始数据图可以看出,数据没有上升或下降趋势,也不表现出周期性,故初步判断该序列平稳。对原始数据进行ADF检验,如下图结果,表中T=-4.735499小于ADF表中1%〜5%水平下的临界值,故拒绝原假设,即不存在单位根,因此,该原始序列是平稳的。NullHypothesis:SER01hasaunitrootExogenous:Constant,Linea「T「enciLagLength:0[AutomaticbasedonAIC,MAXLAG=11)t-StatisticProb*AugmentedDickey-Fullerteststatistic-4.7354990.0014Testcriticalvalues:1%level-4.0007135%level-347255310%level-3.163450*MacKinnonf1996)one-sidedp-values.AugmentedDickey-FullerTestEquationDependentvariable:D(SER01)Method:LeastSquares□ate:12/01/13Time:15:57Sample(adjusted):20142036Includedobservations:73afteradjustmentsVariableCoefficientStd.Errort-StatisticProb.SER01H)-0.4303320.10U32-4.7354990.0000C4.1135S21.1094793.7076710.0004@TREND(2013)0.0110720.0155370.7641130.4474R-squared0.242660Meandependentvar-0.094521AdjustedR-squared0.221022S.D.dependentvar3.134215S.E.ofreg「ession2.766250Akaikeinfocriterion4.913090Sumsquaredresid535.6497Schwarzcriterion5.00721SLoglikelihood-1763278Hannan-Quinncriter.4.950602F-statistic11.21439Durbin-Watsonstat1.717210ProbfF-statistic)0.0000602.模型识别使用Eviews6.0软件做出原始数据的自相关,偏自相关函数图像,如下图。取M=[v74]=8,当m=1时,、上1(A22折u+2p「。其在Pk«=2,3,4,5,6,7,8,9)中满足pJ<0.156的占|=62.5%当m=2时,在p(k=3,4,5,6,7,8,9,10)中满足p<[上(1+注p2)]2=0.150的占kknit=16=75.0%>68.3%,因而pk为2步截尾。可初步判定该序列X七适合MA(2)模型。对于偏自相关函数中序列,当k=1时,巾,。,...,©中满足kk223399cA>-^=0.232的个数占上=12.5%<31.7%,因而中在1步截尾。可初步判断该kk!N8kk

序列Xf也适合AR(1)模型,下面分别考虑两种模型的优劣。□ate:12/01/13Time:16:03Sample:20132036Includecfobservations:74AutocorrelationPartialCorrelationACFACQ-StatProb11110.5250.52521.1960.0001n11i20.233-0.05325.4510.00013i11i30.031-0.02525.9710.000|E11匚i4-0.097-0.16426.7300.000|匚111i5-0.166-0.05423.9790.000111160.0330.24729.0720.0001□11Ji70.1200.04230.2770.0001□I1]i30.1740.07132.3670.0001□111i90.140-0.06134.7680.00011ICi10-0.010-0.15934.7930.0001匚11i11-0.1200.00136.0790.0001匚11.1i12-0.155-0.03030.2490.0001匚11Ii13-0.1330.03339.0760.0001[11iU-0.0510.00340.1240.0001111i150.042-0.01540.2910.0001Ii11i160.049-0.02640.5270.001J111匚i17-0.0M-0.13240.7170.0011匚11[i18-0.159-0.09543.2490.001IC11Ii19-0.1730.040463140.000仁1(.1i20-0.190-0.04850.0600.0001匚111i21-0.159-0.03652.7500.000J111i22-0.0330.01552.3710.0001111i230.0490.00253.1370.0001]11i240.0500.01253.4150.0011]11]i250.0770.06S54.1020.0011]11]i260.0740.07354.7510.00113i1Ji270.0670.08655.2030.001|i11匚i23-0.033-0.16455.4170.002J111i29-0.0280.01355.5140.002J1111i30-0.027-0.04055.6090.003111]i310.0110.04955.6250.0041Ii1]i320.0570.07256.0530.0053.模型定阶对上面的序列进行残差方差图定阶,先做出模型从1阶开始的剩余平方和,并做出一定阶数范围内的残差方差图,如下。可以看出模型MA(2)阶数m从1上升至2时,残差方差减小较快;模型阶数m继续上升时,残差方差开始增大,可以判断合适的模型阶数为2。而在AR模型残差方差图中可以看出,适合的模型阶数为1。3200MA模型残差方差图AR模型残差方差图4.模型拟合与检验使用Eviews6.0软件得到如下结果进行分析:DependentVariable:SER01Method:LeastSquaresDate:12/01/13Time:17:16Sample:20132036Includedobservations:74Convergenceachievedafter13iterationsMASackcast:20112012VariableCoefficientStd.Errort-StatisticProb.M.A⑴1.2362150.09223813.395220.0000MA(2)0.641S650.0929046.9000930.0000R-squarecf-1.107575Meandependentvar9.633784AdjustedR-squared-1.136047S.D.dependentvar3.247434S.E.ofregression4.747035Akaikeinfocriterion5.979594Sumsquaredresid1622.507Schwarzcriterion6.041366Loglikelihood-219.2450Hannan-Quinncriter.6.004435Durbin-Watsonstat1.524675InvertedMARoots-.62-51i-.62+51i由上图可以知道MA(2)模型为:X=a-1.236215a1—0.641865a2IIIIIIII■303Q203020402050206020302090——SEtJOIF----72S.E对模型进行预测,如下图,可以看到预测值波动性大,不相等系数为IIIIIIII■303Q203020402050206020302090——SEtJOIF----72S.EF-DieDast:SEREFActifal:SERSF<jpEDastsample:2313205(2litcImdeElobEervatrane:50RootKaanSqirirecfError4.74SS2Bk拒anAbsoluteErrorB.SE4S4TWearAbs.PervertError45J23O5TheilIneiiKlityCneffkjent0.2753S1BiasProporttoF0.49&599VariaRDaProportion0.843了,CovarianoeProporttorO.M&53-D使用Eviews6.0软件得到如下结果进行分析:

DependentVariable:SER02Method:LeastSquaresDate:12;03/13Time:15:23Sample(adjusted}:20142086Includedobservations:73afteradjustmentsConvergenceachievedafter2iterationsVariableCoefficientStd.Errort-StatisticProb.AR⑴0.9442590.03537726.690930.0000R-squarecf0.093229Meandependentvar9.530822AdjustedR-squared0.093229S.D.dependentvar3.237563S.E.ofregression3.0S2960Akaikeinfocriterion5.10S261Sumsquaredresid684.3342Schwarzcriterion5.134637Loglikelihood-105.2690Hannan-Quinncriter.5.115765Durbin-Watsonstat2.119731Inverted.^RRoots.94有上图可以知道AR(1)模型为:X=0.944259X「a对模型进行预测,如下图,可以看到预测值波动性大,不相等系数为16%,其中协方差比列为97%,方差比列为0.3%。因此,认为AR(1)模型比MA(2)模型拟合更好,更适合。Forecast:SEROTFAct^l:SER01Forecastsample:231322®Acfjustedsample:20t4Forecast:SEROTFAct^l:SER01Forecastsample:231322®Acfjustedsample:20t42092Irtclucfedobser'i'aterts:7SRmtkteanSquaredError3.111817kteanAbsolutsError2.103155加职Ate.Percer?itError3240450TteilIrsq^lrtyCoeffiDEn-t9.355046BiasProportkjft0/D21S33VarianceProportiori0.W3422CovarianoeProportion0.97-4f*452CQ3203020502070208QI——SER01F-——72SE零均值化后所得数据如下:

3.9575-5.5425-5.5425-5.0425-6.5425-6.54250.45750.6575-0.54250.4575-1.04-2.540.957-2.04-2.540.957-0.04-2.542.4573.95725255252552525552.9575.4573.4571.457-0.540.9570.9571.9570.957-0.54555525555525-1.34-1.04-0.34-1.040.4574.9573.457-7.54-3.54-3.54252525255552525251.457-0.042.9574.2572.4572.4572.4573.4572.4574.457525555555554.9573.9572.757-2.54-2.54-2.54-3.042.9575.4572.957555252525255552.0571.4570.457-1.04-6.541.9571.9571.9571.457-0.545552525555525-7.04-2.54-3.54-2.944.4571.457-0.54-3.04-5.54-3.54252525255525252525模型拟合1使用Eviews6.0软件对模型ARMA(2n,2n-1)从n=1起进行拟合,改变阶数时剩余平方和变化列表如下:ARMA(6,5)ARMA(4,3)ARMA(2,1)576.3910655.0604496.3023由表可知:当n=2时的剩余平方和大于n=1时的剩余平方和,从n=1之后阶数增加而模型的剩余平方和不再显著减小,因此ARMA(2,1)是适合的。模型适应性检验拟合ARMA(2,1)模型,输出的模型适应性检验Q统计量为L(74)〜Q相伴概率(p值)87.02300.5341612.7560.690前8期的残差自相关的整体的心检验的相伴概率(p值)大于0.05,表明ARMA(2,1)模型是合适的。残差自相关如下图所示,滞后两期的残差自相关函数小于L96/yN=0.228,残差自相关检验也表明ARMA(2,1)模型是适合的。

Date:12/03713Time:16:09Sample:20132092Includedobservations:72AutocorrelationPartialCorrelationACFAC€l-StatProb11111110.0320.0320.07030.7301[11112-0.053-0.0540.29000.36511113-0.0010.0030.29000.9621□11匚14-0.123-0.1261.47570.0311匚1|匚15-0.200-0.1954.64540.4611I11]160.0810.0305.16900.5221111170.0440.0205.33020.6201□11□Ia0.1430.1437.02300.5341□112i90.1260.0838.36720.4981[1|E110-0.065-0.0818.72660.5581111111-0.0410.000S.B7510.6331匚1IE112-0.161-0.U911.16&0.5151C1r1113-0.100-0.02712.0640.5221111140.0200.01312.1010.59S11111150.0610.004124470.64511111160.0570.02312.75&0.6901]111170.073-0.01013.2690.71S1匚1iE110-0.123-0.12414.7720.6781[11119-0.059-0.01015.1280.7141111120-0.046-0.00915.3430.7561匚1iE121-0.149-0.10017.6570.6711111220.011-0.01017.6710.725111I11230.064-0.03518.1120.7511111240.013-0.01618.1300.79711111250.037-0.005182870.330111111260.04&0.03218.5100.0561]11□I270.0310.17719.2960.359|E1iE128-0.124-0.12321.1520.31911111129-0.0170.03721.1070.052111iE130-0.030-0.07421.3750.37611l11-0.004-0.026213780.90211111320.0060.026213030.923对于ARMA(2,1)模型,由P-W方法已无更低阶模型,故对序列作ARMA(2,1)建模分析如下:DepencfentVariable:SER01Method:LeastSquares□ate:12/17/13Time:22:15Samplefadjusted):20152036Includedobservations:72afteradjustmentsConvergenceachievedafter10iterationsMABackcast2014VariableCoefficientStd.Errort-StatisticProb.AR⑴1.2104930.2000476.0510590.0000AR⑵-0.40621S0.1362n-2.9021360.0040MA(1)-0.6940620.19S246-3.5010180.0003R-squared0366S2SMeandependentvar0.1158S3AdjustedR-squared0.348470S.D.dependentvar3.191351S.E.ofregression2.575976Akaikeinfocriterion4.771103Sumsquaredresid457.0601Schwa

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论