




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
超级电容器电极材料的制备摘要:关键词:Abstract:Keyword:超级电容器简介近年来,随着便携电子设备的快速增长和混合动力汽车的迅速发展,当前电池的设计标准已渐渐无法满足实际的需求。在目前的市场上,碱锰、银锌等一次电池,铅酸、镍镉、镍氢、锂离子等二次电池,长久以来在汽车、电子、通讯、航空航天等领域己被广泛地应用ADDINEN.CITE<EndNote><Cite><Author>孙哲</Author><Year>2010</Year><RecNum>121</RecNum><DisplayText><styleface="superscript">[1]</style></DisplayText><record><rec-number>121</rec-number><foreign-keys><keyapp="EN"db-id="spwtfdaersdazae502uvtrrxzs0wr5aed2re">121</key></foreign-keys><ref-typename="Thesis">32</ref-type><contributors><authors><author>孙哲</author></authors><tertiary-authors><author>刘开宇,</author></tertiary-authors></contributors><titles><title>介孔电极材料的制备及其超级电容性能的研究</title></titles><keywords><keyword>超级电容器</keyword><keyword>介孔二氧化锰</keyword><keyword>介孔碳</keyword><keyword>硬模板</keyword><keyword>电化学电容性能</keyword><keyword>非对称</keyword></keywords><dates><year>2010</year></dates><publisher>中南大学</publisher><work-type>硕士</work-type><urls></urls><remote-database-provider>Cnki</remote-database-provider></record></Cite></EndNote>[\o"孙哲,2010#121"1]。这些电池的特点是能量密度较大,能满足大多数的应用需求。然而,它们都有一些缺陷:充电时间长,功率密度低下,循环次数较少等。在一些需要大电流输出的场合,已不能满足体系所需要的最大峰值功率ADDINEN.CITE<EndNote><Cite><Author>Simon</Author><Year>2008</Year><RecNum>20</RecNum><DisplayText><styleface="superscript">[2]</style></DisplayText><record><rec-number>20</rec-number><foreign-keys><keyapp="EN"db-id="spwtfdaersdazae502uvtrrxzs0wr5aed2re">20</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Simon,Patrice</author><author>Gogotsi,Yury</author></authors></contributors><titles><title>Materialsforelectrochemicalcapacitors</title><secondary-title>NatureMaterials</secondary-title></titles><periodical><full-title>NatureMaterials</full-title></periodical><pages>845-854</pages><volume>7</volume><number>11</number><dates><year>2008</year><pub-dates><date>Nov</date></pub-dates></dates><isbn>1476-1122</isbn><accession-num>WOS:000260472800016</accession-num><urls><related-urls><url><GotoISI>://WOS:000260472800016</url></related-urls></urls><electronic-resource-num>10.1038/nmat2297</electronic-resource-num><research-notes><styleface="normal"font="Arial"size="100%">H2</style></research-notes></record></Cite></EndNote>[\o"Simon,2008#20"2]。另一方面,具有快速充放电、高功率等特性的传统电容器,目前仍广泛应用于电子设备中。然而,由于其储能密度过低,在人们对储能器件要求日益严格的今天,其应用范围正在不断缩小。于是,开发兼具高能量密度和大功率密度的储能器件成为几年来新的研究热点ADDINEN.CITE<EndNote><Cite><Author>Miller</Author><Year>2008</Year><RecNum>123</RecNum><DisplayText><styleface="superscript">[3]</style></DisplayText><record><rec-number>123</rec-number><foreign-keys><keyapp="EN"db-id="spwtfdaersdazae502uvtrrxzs0wr5aed2re">123</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Miller,JohnR.</author><author>Simon,Patrice</author></authors></contributors><titles><title>Materialsscience-Electrochemicalcapacitorsforenergymanagement</title><secondary-title>Science</secondary-title></titles><periodical><full-title>Science</full-title></periodical><pages>651-652</pages><volume>321</volume><number>5889</number><dates><year>2008</year><pub-dates><date>Aug1</date></pub-dates></dates><isbn>0036-8075</isbn><accession-num>WOS:000258077700031</accession-num><urls><related-urls><url><GotoISI>://WOS:000258077700031</url><url>/content/321/5889/651.full.pdf</url></related-urls></urls><electronic-resource-num>10.1126/science.1158736</electronic-resource-num></record></Cite></EndNote>[\o"Miller,2008#123"3]。超级电容器,又被称为电化学电容器,是一种新型的储能元件,性能介于传统电容器和化学电池之间。相比于传统电容器,超级电容器的能量密度提高了3~4个数量级;与化学电池相比,超级电容器仍然具有类似传统电容的高放电功率,所以仍然称之为“电容”。但是,超级电容器已经不再是一般意义上的电路元件,而是一种新型储能器件。超级电容器的特点在于充电速度快、循环次数大、功率密度大、工作温度范围宽、环保节能等ADDINEN.CITE<EndNote><Cite><Author>邓梅根</Author><Year>2005</Year><RecNum>122</RecNum><DisplayText><styleface="superscript">[4]</style></DisplayText><record><rec-number>122</rec-number><foreign-keys><keyapp="EN"db-id="spwtfdaersdazae502uvtrrxzs0wr5aed2re">122</key></foreign-keys><ref-typename="Thesis">32</ref-type><contributors><authors><author>邓梅根</author></authors><tertiary-authors><author>杨邦朝,</author></tertiary-authors></contributors><titles><title>电化学电容器电极材料研究</title></titles><keywords><keyword>电化学电容器</keyword><keyword>活性炭</keyword><keyword>氧化镍</keyword><keyword>碳纳米管</keyword><keyword>活性炭纤维布</keyword></keywords><dates><year>2005</year></dates><publisher>电子科技大学</publisher><work-type>博士</work-type><urls></urls><remote-database-provider>Cnki</remote-database-provider></record></Cite></EndNote>[\o"邓梅根,2005#122"4]。然而超级电容器的能量密度仍然达不到化学电池的水平,因此在最近几年,大量的研究工作致力于在不牺牲大功率容量的前提下提高超级电容器的能量密度。超级电容器的最大的能量密度(E)和功率密度(P)可以分别由公式(1)ADDINEN.CITE<EndNote><Cite><Author>樊桢</Author><Year>2008</Year><RecNum>117</RecNum><DisplayText><styleface="superscript">[5]</style></DisplayText><record><rec-number>117</rec-number><foreign-keys><keyapp="EN"db-id="spwtfdaersdazae502uvtrrxzs0wr5aed2re">117</key></foreign-keys><ref-typename="Thesis">32</ref-type><contributors><authors><author>樊桢</author></authors><tertiary-authors><author>陈金华,</author></tertiary-authors></contributors><titles><title>电化学电容器电极材料的制备及其电容性能研究</title></titles><keywords><keyword>电化学电容器</keyword><keyword>电极材料</keyword><keyword>制备</keyword><keyword>电容性能</keyword><keyword>氧化物</keyword></keywords><dates><year>2008</year></dates><publisher>湖南大学</publisher><work-type>博士</work-type><urls></urls><remote-database-provider>Cnki</remote-database-provider></record></Cite></EndNote>[\o"樊桢,2008#117"5]和(2)ADDINEN.CITE<EndNote><Cite><Author>Zhang</Author><Year>2009</Year><RecNum>120</RecNum><DisplayText><styleface="superscript">[6]</style></DisplayText><record><rec-number>120</rec-number><foreign-keys><keyapp="EN"db-id="spwtfdaersdazae502uvtrrxzs0wr5aed2re">120</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Zhang,LiLi</author><author>Zhao,X.S.</author></authors></contributors><titles><title>Carbon-basedmaterialsassupercapacitorelectrodes</title><secondary-title>ChemicalSocietyReviews</secondary-title></titles><periodical><full-title>ChemicalSocietyReviews</full-title></periodical><pages>2520-2531</pages><volume>38</volume><number>9</number><dates><year>2009</year><pub-dates><date>2009</date></pub-dates></dates><isbn>0306-0012</isbn><accession-num>WOS:000269088000002</accession-num><urls><related-urls><url><GotoISI>://WOS:000269088000002</url><url>/en/content/articlepdf/2009/cs/b813846j</url></related-urls></urls><electronic-resource-num>10.1039/b813846j</electronic-resource-num></record></Cite></EndNote>[\o"Zhang,2009#120"6]得到。E=CV2/2(1)P=V2/4R(2)式中,C:电容器总电容(单位:法拉);V:工作电压(单位:伏特);R:是指等效串联电阻(单位:欧姆)。图1.提高超级电容器能量密度的不同方法的示意图因此,得到性能优越的超级电容器的关键是,同时拥有高的比电容、宽工作电压和低等效串联电阻。基于公式(1),图1表明了高能量密度超级电容器的重要参数ADDINEN.CITEADDINEN.CITE.DATA[\o"Yan,2014#46"7]。提高电容值是提高能量密度的有效方法,提高电容值可以通过提高正负电极的比电容来实现。在近几年对超级电容器的研究和开发中,设计和开发具有高比电容的纳米结构电极材料引起了极大的兴趣。具体地说,关于碳材料,提高比电容可以通过提高比表面积和最优化孔隙尺寸和孔隙大小分布而不牺牲良好的电导率来实现,通过开发分层次的多孔结构能实现最优化孔隙尺寸和孔隙大小分布ADDINEN.CITE<EndNote><Cite><Author>Bose</Author><Year>2012</Year><RecNum>119</RecNum><DisplayText><styleface="superscript">[8]</style></DisplayText><record><rec-number>119</rec-number><foreign-keys><keyapp="EN"db-id="spwtfdaersdazae502uvtrrxzs0wr5aed2re">119</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Bose,Saswata</author><author>Kuila,Tapas</author><author>Mishra,AnantaKumar</author><author>Rajasekar,R.</author><author>Kim,NamHoon</author><author>Lee,JoongHee</author></authors></contributors><titles><title>Carbon-basednanostructuredmaterialsandtheircompositesassupercapacitorelectrodes</title><secondary-title>JournalofMaterialsChemistry</secondary-title></titles><periodical><full-title>JournalofMaterialsChemistry</full-title></periodical><pages>767-784</pages><volume>22</volume><number>3</number><dates><year>2012</year><pub-dates><date>2012</date></pub-dates></dates><isbn>0959-9428</isbn><accession-num>WOS:000299212700001</accession-num><urls><related-urls><url><GotoISI>://WOS:000299212700001</url><url>/en/content/articlepdf/2012/jm/c1jm14468e</url></related-urls></urls><electronic-resource-num>10.1039/c1jm14468e</electronic-resource-num></record></Cite></EndNote>[\o"Bose,2012#119"8]。对于赝电容材料,提高比电容可以通过合成具有高比表面积的纳米电活性材料和开发具有高电导率的分层次多孔结构的电活性材料来实现,高比表面积的纳米电活性材料能为法拉第反应提供足够多的电活性单元,分层次多孔结构的电活性材料能够保证足够多的电解质离子和原子同时以高速率参与法拉第反应ADDINEN.CITE<EndNote><Cite><Author>Augustyn</Author><Year>2014</Year><RecNum>11</RecNum><DisplayText><styleface="superscript">[9]</style></DisplayText><record><rec-number>11</rec-number><foreign-keys><keyapp="EN"db-id="spwtfdaersdazae502uvtrrxzs0wr5aed2re">11</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Augustyn,Veronica</author><author>Simon,Patrice</author><author>Dunn,Bruce</author></authors></contributors><titles><title>Pseudocapacitiveoxidematerialsforhigh-rateelectrochemicalenergystorage</title><secondary-title>Energy&EnvironmentalScience</secondary-title></titles><periodical><full-title>Energy&EnvironmentalScience</full-title></periodical><pages>1597-1614</pages><volume>7</volume><number>5</number><dates><year>2014</year></dates><publisher>TheRoyalSocietyofChemistry</publisher><isbn>1754-5692</isbn><work-type>10.1039/C3EE44164D</work-type><urls><related-urls><url>/10.1039/C3EE44164D</url><url>/en/Content/ArticleLanding/2014/EE/c3ee44164d</url></related-urls></urls><electronic-resource-num>10.1039/C3EE44164D</electronic-resource-num><research-notes><styleface="normal"font="default"size="100%">H</style><styleface="normal"font="default"charset="134"size="100%">165</style></research-notes></record></Cite></EndNote>[\o"Augustyn,2014#11"9]。纳米材料大大地加速了超级电容器的发展ADDINEN.CITE<EndNote><Cite><Author>桑林</Author><Year>2007</Year><RecNum>124</RecNum><DisplayText><styleface="superscript">[10]</style></DisplayText><record><rec-number>124</rec-number><foreign-keys><keyapp="EN"db-id="spwtfdaersdazae502uvtrrxzs0wr5aed2re">124</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>桑林</author><author>王美丽</author><author>黄成德</author></authors></contributors><titles><title>一维纳米材料在超级电容器中的应用</title><secondary-title>电源技术</secondary-title></titles><periodical><full-title>电源技术</full-title></periodical><number>09</number><keywords><keyword>超级电容器</keyword><keyword>电化学电容器</keyword><keyword>一维纳米</keyword></keywords><dates><year>2007</year></dates><isbn>1002-087X</isbn><urls></urls></record></Cite></EndNote>[\o"桑林,2007#124"10],因为相对其他块体材料而言它们拥有如以下所描述的优越性能:(1)纳米材料可设计成具有高的比表面积,这可以吸附更多的离子或提供更多的活性位点从而形成双电层和发生电荷转移反应,最终提高其比电容大小。(2)纳米活性材料有较短的扩散和传质路径,这有助于电解质离子在其中的传输,相应地提高了电化学性能活性材料的利用率,同时提高了其快速充放电的能力。在经典电化学理论,离子扩散时间(τ)可用公式(3)来表达:τ=L2/2D(3)式中L是离子扩散距离,D为离子扩散系数。随着粒子尺寸的减小,相应的扩散距离将会减小,离子扩散时间就随之减低,这是很明显的。(3)体积小的粒子可以有效缓冲电极由于在充/放电过程中的扩张和收缩所产生的应力,从而防止电极的粉碎,提高其循环稳定性。(4)纳米结构材料的大比表面积增大了电极和电解质之间的接触面积,从而相对于块体材料具有更高的离子流通量。2.超级电容器电极材料研究进展电极材料是影响电化学电容器性能的核心因素之一,是当前电化学电容器研究的热点。从材料的角度来看,电化学电容器用电极材料主要可以分为四类:碳基电极材料、金属氧化物基电极材料、导电聚合物基电极材料和复合电极材料。2.1碳基电极材料纳米结构电极材料的发展有助于超级电容技术的进步。为了获得大的比电容和高的功率和能量密度,各种各样的碳基材料被用于制造超级电容器的电极ADDINEN.CITEADDINEN.CITE.DATA[\o"Talapatra,2006#129"11-15]。活性炭,因其具有的大比表面积、低成本、易加工等特性,被广泛应用在超级电容器的电极材料中ADDINEN.CITE<EndNote><Cite><Author>Frackowiak</Author><Year>2007</Year><RecNum>131</RecNum><DisplayText><styleface="superscript">[16]</style></DisplayText><record><rec-number>131</rec-number><foreign-keys><keyapp="EN"db-id="spwtfdaersdazae502uvtrrxzs0wr5aed2re">131</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Frackowiak,Elzbieta</author></authors></contributors><titles><title>Carbonmaterialsforsupercapacitorapplication</title><secondary-title>PhysicalChemistryChemicalPhysics</secondary-title></titles><periodical><full-title>PhysicalChemistryChemicalPhysics</full-title></periodical><pages>1774-1785</pages><volume>9</volume><number>15</number><dates><year>2007</year></dates><urls></urls></record></Cite></EndNote>[\o"Frackowiak,2007#131"16]。然而,因为活性炭较低的能量存储能力和较差的倍率性能,它的应用受到了较大的限制。碳基材料,例如碳纳米管和石墨烯,可以成为电极材料的潜在候选。这是由于它们具有优异的电学和机械特性,并且还具有特别的微结构ADDINEN.CITE<EndNote><Cite><Author>Geim</Author><Year>2007</Year><RecNum>132</RecNum><DisplayText><styleface="superscript">[17]</style></DisplayText><record><rec-number>132</rec-number><foreign-keys><keyapp="EN"db-id="spwtfdaersdazae502uvtrrxzs0wr5aed2re">132</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Geim,AndreK</author><author>Novoselov,KonstantinS</author></authors></contributors><titles><title>Theriseofgraphene</title><secondary-title>Naturematerials</secondary-title></titles><periodical><full-title>NatureMaterials</full-title></periodical><pages>183-191</pages><volume>6</volume><number>3</number><dates><year>2007</year></dates><isbn>1476-1122</isbn><urls></urls></record></Cite></EndNote>[\o"Geim,2007#132"17]。微结构的特性和形态对于电解质的有效渗透是至关重要的。相比于活性炭,碳基纳米材料的微结构特性能给超级电容器的比电容带来一个巨大的提升ADDINEN.CITE<EndNote><Cite><Author>Dillon</Author><Year>2010</Year><RecNum>133</RecNum><DisplayText><styleface="superscript">[18]</style></DisplayText><record><rec-number>133</rec-number><foreign-keys><keyapp="EN"db-id="spwtfdaersdazae502uvtrrxzs0wr5aed2re">133</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Dillon,AC</author></authors></contributors><titles><title>Carbonnanotubesforphotoconversionandelectricalenergystorage</title><secondary-title>Chemicalreviews</secondary-title></titles><periodical><full-title>Chemicalreviews</full-title></periodical><pages>6856-6872</pages><volume>110</volume><number>11</number><dates><year>2010</year></dates><isbn>0009-2665</isbn><urls></urls></record></Cite></EndNote>[\o"Dillon,2010#133"18]。2.1.1石墨烯石墨烯是一种二维蜂窝状纳米材料,它是从块状石墨中用胶带剥离得到的ADDINEN.CITE<EndNote><Cite><Author>Novoselov</Author><Year>2004</Year><RecNum>134</RecNum><DisplayText><styleface="superscript">[19]</style></DisplayText><record><rec-number>134</rec-number><foreign-keys><keyapp="EN"db-id="spwtfdaersdazae502uvtrrxzs0wr5aed2re">134</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Novoselov,KostyaS</author><author>Geim,AndreK</author><author>Morozov,SV</author><author>Jiang,D</author><author>Zhang,Y_</author><author>Dubonos,SV</author><author>Grigorieva,IV</author><author>Firsov,AA</author></authors></contributors><titles><title>Electricfieldeffectinatomicallythincarbonfilms</title><secondary-title>science</secondary-title></titles><periodical><full-title>Science</full-title></periodical><pages>666-669</pages><volume>306</volume><number>5696</number><dates><year>2004</year></dates><isbn>0036-8075</isbn><urls></urls></record></Cite></EndNote>[\o"Novoselov,2004#134"19],从它被发现的那时候起就引起了国际上极大地研究兴趣。由于石墨烯的特殊结构,它拥有极大的理论比表面积(2630m2·g-1)和非凡的电学、机械、热力学和光学性能ADDINEN.CITE<EndNote><Cite><Author>来常伟</Author><Year>2013</Year><RecNum>135</RecNum><DisplayText><styleface="superscript">[20]</style></DisplayText><record><rec-number>135</rec-number><foreign-keys><keyapp="EN"db-id="spwtfdaersdazae502uvtrrxzs0wr5aed2re">135</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>来常伟</author><author>孙莹</author><author>杨洪</author><author>张雪勤</author><author>林保平</author></authors></contributors><titles><title>通过“点击化学”对石墨烯和氧化石墨烯进行功能化改性</title><secondary-title>化学学报</secondary-title></titles><periodical><full-title>化学学报</full-title></periodical><number>09</number><keywords><keyword>点击化学</keyword><keyword>石墨烯</keyword><keyword>氧化石墨烯</keyword><keyword>功能化</keyword></keywords><dates><year>2013</year></dates><isbn>0567-7351</isbn><urls></urls></record></Cite></EndNote>[\o"来常伟,2013#135"20]。因此,石墨烯在超级电容器电极中的应用拥有巨大的潜在前景。然而在超级电容器的商业生产情况下,石墨烯仍然存在着不少的缺陷。大规模合成高品质的石墨烯。在目前的研究中,最大的挑战就是大规模的合成高品质的石墨烯。一直到现在为止,仍然有很多的人努力去发展新的合成策略为了获得高品质石墨烯的大规模生产。采用胶带的机械剥离法确实能获得高品质的石墨烯,但是这个方法实在是太乏味冗长了,并且这种方法很难控制,产量很低ADDINEN.CITE<EndNote><Cite><Author>Novoselov</Author><Year>2004</Year><RecNum>134</RecNum><DisplayText><styleface="superscript">[19]</style></DisplayText><record><rec-number>134</rec-number><foreign-keys><keyapp="EN"db-id="spwtfdaersdazae502uvtrrxzs0wr5aed2re">134</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Novoselov,KostyaS</author><author>Geim,AndreK</author><author>Morozov,SV</author><author>Jiang,D</author><author>Zhang,Y_</author><author>Dubonos,SV</author><author>Grigorieva,IV</author><author>Firsov,AA</author></authors></contributors><titles><title>Electricfieldeffectinatomicallythincarbonfilms</title><secondary-title>science</secondary-title></titles><periodical><full-title>Science</full-title></periodical><pages>666-669</pages><volume>306</volume><number>5696</number><dates><year>2004</year></dates><isbn>0036-8075</isbn><urls></urls></record></Cite></EndNote>[\o"Novoselov,2004#134"19]。目前,已经有很多方法被开发出来用于生产石墨烯,包括SiC表面的外延生长法ADDINEN.CITE<EndNote><Cite><Author>陆东梅</Author><Year>2012</Year><RecNum>137</RecNum><DisplayText><styleface="superscript">[21]</style></DisplayText><record><rec-number>137</rec-number><foreign-keys><keyapp="EN"db-id="spwtfdaersdazae502uvtrrxzs0wr5aed2re">137</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>陆东梅</author><author>杨瑞霞</author><author>孙信华</author><author>吴华</author><author>郝建民</author></authors></contributors><titles><title>石墨烯的SiC外延生长及应用</title><secondary-title>半导体技术</secondary-title></titles><periodical><full-title>半导体技术</full-title></periodical><number>09</number><keywords><keyword>石墨烯</keyword><keyword>SiC</keyword><keyword>外延</keyword><keyword>缓冲层</keyword><keyword>场效应晶体管</keyword></keywords><dates><year>2012</year></dates><isbn>1003-353X</isbn><urls></urls></record></Cite></EndNote>[\o"陆东梅,2012#137"21]、金属基板表面化学气相沉积法ADDINEN.CITE<EndNote><Cite><Author>黄曼</Author><Year>2012</Year><RecNum>136</RecNum><DisplayText><styleface="superscript">[22]</style></DisplayText><record><rec-number>136</rec-number><foreign-keys><keyapp="EN"db-id="spwtfdaersdazae502uvtrrxzs0wr5aed2re">136</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>黄曼</author><author>郭云龙</author><author>武斌</author><author>刘云圻</author><author>付朝阳</author><author>王帅</author></authors></contributors><titles><title>化学气相沉积法合成石墨烯的转移技术研究进展</title><secondary-title>化学通报</secondary-title></titles><periodical><full-title>化学通报</full-title></periodical><number>11</number><keywords><keyword>化学气相沉积法</keyword><keyword>石墨烯</keyword><keyword>转移技术</keyword></keywords><dates><year>2012</year></dates><isbn>0441-3776</isbn><urls></urls></record></Cite></EndNote>[\o"黄曼,2012#136"22]和无基板的气相合成ADDINEN.CITE<EndNote><Cite><Author>王灿</Author><Year>2012</Year><RecNum>138</RecNum><DisplayText><styleface="superscript">[23]</style></DisplayText><record><rec-number>138</rec-number><foreign-keys><keyapp="EN"db-id="spwtfdaersdazae502uvtrrxzs0wr5aed2re">138</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>王灿</author><author>王艳莉</author><author>詹亮</author><author>何星</author><author>杨俊和</author><author>乔文明</author><author>凌立成</author></authors></contributors><titles><title>微波辐照气相法合成氮掺杂石墨烯</title><secondary-title>无机材料学报</secondary-title></titles><periodical><full-title>无机材料学报</full-title></periodical><number>02</number><keywords><keyword>石墨烯</keyword><keyword>氮掺杂</keyword><keyword>微波辐照气相法</keyword></keywords><dates><year>2012</year></dates><isbn>1000-324X</isbn><urls></urls></record></Cite></EndNote>[\o"王灿,2012#138"23]等。在众多的合成方法中,化学剥离氧化石墨后还原的方法可能是最具有应用前景的。在过去的多年中,通过各种方法合成的石墨烯被用于制备超级电容器的电极(表1)。在2008年,Ruoff等采用水合肼还原氧化石墨烯作为超级电容器的电极材料,分别在水系和有机电解质中测得比电容为135和99F·g-1ADDINEN.CITE<EndNote><Cite><Author>Stoller</Author><Year>2008</Year><RecNum>139</RecNum><DisplayText><styleface="superscript">[24]</style></DisplayText><record><rec-number>139</rec-number><foreign-keys><keyapp="EN"db-id="spwtfdaersdazae502uvtrrxzs0wr5aed2re">139</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Stoller,MerylD</author><author>Park,Sungjin</author><author>Zhu,Yanwu</author><author>An,Jinho</author><author>Ruoff,RodneyS</author></authors></contributors><titles><title>Graphene-basedultracapacitors</title><secondary-title>Nanoletters</secondary-title></titles><periodical><full-title>Nanoletters</full-title></periodical><pages>3498-3502</pages><volume>8</volume><number>10</number><dates><year>2008</year></dates><isbn>1530-6984</isbn><urls></urls></record></Cite></EndNote>[\o"Stoller,2008#139"24]。这个结果表面了石墨烯在高性能储能器件中具有极大地应用潜力。相比传统的多孔材料,石墨烯的有效表面积取决于石墨烯层的数量,而不是孔隙的分布ADDINEN.CITE<EndNote><Cite><Author>Wang</Author><Year>2009</Year><RecNum>152</RecNum><DisplayText><styleface="superscript">[25]</style></DisplayText><record><rec-number>152</rec-number><foreign-keys><keyapp="EN"db-id="spwtfdaersdazae502uvtrrxzs0wr5aed2re">152</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Wang,Yan</author><author>Shi,Zhiqiang</author><author>Huang,Yi</author><author>Ma,Yanfeng</author><author>Wang,Chengyang</author><author>Chen,Mingming</author><author>Chen,Yongsheng</author></authors></contributors><titles><title>Supercapacitordevicesbasedongraphenematerials</title><secondary-title>TheJournalofPhysicalChemistryC</secondary-title></titles><periodical><full-title>TheJournalofPhysicalChemistryC</full-title></periodical><pages>13103-13107</pages><volume>113</volume><number>30</number><dates><year>2009</year></dates><isbn>1932-7447</isbn><urls></urls></record></Cite></EndNote>[\o"Wang,2009#152"25]。因此,具有低附聚特性的一层或几层石墨烯被认为具有大的有效表面积和优秀的电化学性能。气基肼还原得到的石墨烯表现出优良的低附聚特性,比表面积达到了320m2·g-1。在使用水系电解质的情况下,实验体系获得了最大的比电容(205F·g-1),能量密度为28.5Wh·kg-1,功率密度为10kW·kg-1。在经过1200次循环后,体系仍然能保有约90%的初始电容量ADDINEN.CITE<EndNote><Cite><Author>Wang</Author><Year>2009</Year><RecNum>152</RecNum><DisplayText><styleface="superscript">[25]</style></DisplayText><record><rec-number>152</rec-number><foreign-keys><keyapp="EN"db-id="spwtfdaersdazae502uvtrrxzs0wr5aed2re">152</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Wang,Yan</author><author>Shi,Zhiqiang</author><author>Huang,Yi</author><author>Ma,Yanfeng</author><author>Wang,Chengyang</author><author>Chen,Mingming</author><author>Chen,Yongsheng</author></authors></contributors><titles><title>Supercapacitordevicesbasedongraphenematerials</title><secondary-title>TheJournalofPhysicalChemistryC</secondary-title></titles><periodical><full-title>TheJournalofPhysicalChemistryC</full-title></periodical><pages>13103-13107</pages><volume>113</volume><number>30</number><dates><year>2009</year></dates><isbn>1932-7447</isbn><urls></urls></record></Cite></EndNote>[\o"Wang,2009#152"25]。这些高性能的参数可以归因于电极材料对电解质离子的高亲和力,比表面积较高的使用率和高的电导率。表1.不同方法制备的石墨烯作为超级电容器电极材料时的性能参数制备方法比表面积(m2·g-1)比电容(F·g-1)循环寿命电解质体系(mol·L-1)水合肼还原ADDINEN.CITE<EndNote><Cite><Author>Stoller</Author><Year>2008</Year><RecNum>139</RecNum><DisplayText><styleface="superscript">[24]</style></DisplayText><record><rec-number>139</rec-number><foreign-keys><keyapp="EN"db-id="spwtfdaersdazae502uvtrrxzs0wr5aed2re">139</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Stoller,MerylD</author><author>Park,Sungjin</author><author>Zhu,Yanwu</author><author>An,Jinho</author><author>Ruoff,RodneyS</author></authors></contributors><titles><title>Graphene-basedultracapacitors</title><secondary-title>Nanoletters</secondary-title></titles><periodical><full-title>Nanoletters</full-title></periodical><pages>3498-3502</pages><volume>8</volume><number>10</number><dates><year>2008</year></dates><isbn>1530-6984</isbn><urls></urls></record></Cite></EndNote>[\o"Stoller,2008#139"24]705135--KOH(5.5)99--TEABF4(1)气基肼还原ADDINEN.CITE<EndNote><Cite><Author>Wang</Author><Year>2009</Year><RecNum>152</RecNum><DisplayText><styleface="superscript">[25]</style></DisplayText><record><rec-number>152</rec-number><foreign-keys><keyapp="EN"db-id="spwtfdaersdazae502uvtrrxzs0wr5aed2re">152</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Wang,Yan</author><author>Shi,Zhiqiang</author><author>Huang,Yi</author><author>Ma,Yanfeng</author><author>Wang,Chengyang</author><author>Chen,Mingming</author><author>Chen,Yongsheng</author></authors></contributors><titles><title>Supercapacitordevicesbasedongraphenematerials</title><secondary-title>TheJournalofPhysicalChemistryC</secondary-title></titles><periodical><full-title>TheJournalofPhysicalChemistryC</full-title></periodical><pages>13103-13107</pages><volume>113</volume><number>30</number><dates><year>2009</year></dates><isbn>1932-7447</isbn><urls></urls></record></Cite></EndNote>[\o"Wang,2009#152"25]3202051200(≈90%)KOH(30%)硼氢化钠还原ADDINEN.CITE<EndNote><Cite><Author>Yu</Author><Year>2010</Year><RecNum>153</RecNum><DisplayText><styleface="superscript">[26]</style></DisplayText><record><rec-number>153</rec-number><foreign-keys><keyapp="EN"db-id="spwtfdaersdazae502uvtrrxzs0wr5aed2re">153</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Yu,A.P.</author><author>Roes,I.</author><author>Davies,A.</author><author>Chen,Z.W.</author></authors></contributors><auth-address>[Yu,Aiping;Roes,Isaac;Davies,Aaron;Chen,Zhongwei]UnivWaterloo,DeptChemEngn,Waterloo,ONN2L3G1,Canada. Yu,AP(reprintauthor),UnivWaterloo,DeptChemEngn,200UnivAveW,Waterloo,ONN2L3G1,Canada. aipingyu@uwaterloo.ca;zhwchen@cape.uwaterloo.ca</auth-address><titles><title>Ultrathin,transparent,andflexiblegraphenefilmsforsupercapacitorapplication</title><secondary-title>AppliedPhysicsLetters</secondary-title><alt-title>Appl.Phys.Lett.</alt-title></titles><periodical><full-title>AppliedPhysicsLetters</full-title><abbr-1>Appl.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 零售业店铺顾客流量分析与营销策略考核试卷
- 针织品销售区域布局优化考核试卷
- 重疾险产品设计
- 胸痛常见疾病及诊断
- 班主任六一汇报工作总结
- 冲管操作与感染防控要点
- 妊高征的急救处理
- 中医外科疾病诊疗概要
- 事故隐患内部报告奖励制度模板三
- 港股6月IPO火热给港股投资带来更多选择
- 2025年度飞机买卖及航空法律咨询服务合同4篇
- 工程测量学知到智慧树章节测试课后答案2024年秋山东科技大学
- 2025年云南省社会科学院中国(昆明)南亚东南亚研究院招聘高层次人才7人历年高频重点提升(共500题)附带答案详解
- DB33-T 1401-2024 公共机构合同能源管理实施规范
- 产褥期脓毒血症护理查房
- 英语名词所有格课件
- 公共伦理复习要点
- 管道打压、吹扫方案
- 石头雕刻合同范例
- 《个人所得税法解读》课件
- 《产品检验方法培训》课件
评论
0/150
提交评论