




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
WORD11/11智立方教育松岗校区八年级上册数学第一章勾股定理测试:___________题号一二三四五总分得分注意事项:1.答题前填写好自己的、班级、考号等信息
2.请将答案正确填写在答题卡上分卷I分卷I注释评卷人得分一、单选题(注释)1、满足下列条件的△ABC,不是直角三角形的是A.b2=c2-a2B.a∶b∶c=3∶4∶5C.∠C=∠A-∠BD.∠A∶∠B∶∠C=12∶13∶152、如果△ABC的三边分别为m2-1,2m,m2+1(m>1)那么A.△ABC是直角三角形,且斜边长为m2+1B.△ABC是直角三角形,且斜边长2为mC.△ABC是直角三角形,但斜边长需由m的大小确定D.△ABC不是直角三角形3、若一个三角形的三边长的平方分别为:32,42,x2则此三角形是直角三角形的x2的值是A.42B.52C.7D.52或74、在下列长度的各组线段中,能组成直角三角形的是A.5,6,7B.1,4,9C.5,12,13D.5,11,125、满足下列条件的△ABC,不是直角三角形的是A.b2=c2-a2B.a∶b∶c=3∶4∶5C.∠C=∠A-∠BD.∠A∶∠B∶∠C=12∶13∶15更多功能介绍ykw18./zt/6、小红要求△ABC最长边上的高,测得AB=8cm,AC=6cm,BC=10cm,则可知最长边上的高是A.48cmB.4.8cmC.0.48cmD.5cm分卷II分卷II注释评卷人得分二、填空题(注释)7、如图:隔湖有两点A、B,为了测得A、B两点间的距离,从与AB方向成直角的BC方向上任取一点C,若测得CA="50"m,CB="40"m,那么A、B两点间的距离是_________.8、有两艘渔船同时离开某港口去捕鱼,其中一艘以16海里/时的速度向东南方向航行,另一艘以12海里/时的速度向东北方向航行,它们离开港口一个半小时后相距________海里.9、某养殖厂有一个长2米、宽1.5米的矩形栅栏,现在要在相对角的顶点间加固一条木板,则木板的长应取________米.10、阅读下列解题过程:已知a,b,c为△ABC的三边,且满足a2c2-b2c2=a4-b4,试判定△ABC的形状.
解:∵a2c2-b2c2=a4-b4
①
∴c2(a2-b2)=(a2+b2)(a2-b2)
②
∴c2=a2+b2
③
∴△ABC是直角三角形
问:上述解题过程,从哪一步开始出现错误?
请写出该步的序号:_________;
错误的原因为_________;
本题正确的结论是_________.11、已知a,b,c为△ABC三边,且满足a2+b2+c2+338=10a+24b+26c.试判断△ABC的形状.12、若△ABC的三边长为a,b,c,根据下列条件判断△ABC的形状.
(1)a2+b2+c2+200=12a+16b+20c
(2)a3-a2b+ab2-ac2+bc2-b3=013、等边三角形ABC一点P,AP=3,BP=4,CP=5,求∠APB的度数.14、一个零件的形状如图所示,工人师傅按规定做得AB=3,BC=4,AC=5,CD=12,AD=13,假如这是一块钢板,你能帮工人师傅计算一下这块钢板的面积吗?15、设三角形的三边分别等于下列各组数:
①7,8,10
②7,24,25
③12,35,37
④13,11,10
请判断哪组数所代表的三角形是直角三角形,为什么?16、作一个三角形,使三边长分别为3cm,4cm,5cm,哪条边所对的角是直角?为什么?17、如图:△ABC的三个角∠A、∠B、∠C所对的边长分别为a、b、c,且满足关系:a2+b2=c2.
请作一个三角形A′B′C′,使∠C′=90°,B′C′=a,A′C′=b.
(1)△A′B′C′是否全等于△ABC?为什么?
(2)∠C′是否等于∠C?
(3)由以上你能判定△ABC是直角三角形吗?请你想一想,三角形三条边长满足什么关系,这个三角形一定是直角三角形?18、如图,已知长方形ABCD中AB="8"cm,BC="10"cm,在边CD上取一点E,将△ADE折叠使点D恰好落在BC边上的点F,求CE的长.19、如图:要修建一个育苗棚,棚高h="1.8"m,棚宽a="2.4"m,棚的长为12m,现要在棚顶上覆盖塑料薄膜,试求需要多少平方米塑料薄膜?20、在△ABC中,∠C="90°,AC=2.1"cm,BC="2.8"cm
(1)求这个三角形的斜边AB的长和斜边上的高CD的长;
(2)求斜边被分成的两部分AD和BD的长.21、已知一个等腰三角形的底边和腰的长分别为12cm和10cm,求这个三角形的面积.22、下图甲是任意一个直角三角形ABC,它的两条直角边的边长分别为a、b,斜边长为c.如图乙、丙那样分别取四个与直角三角形ABC全等的三角形,放在边长为a+b的正方形.
①图乙和图丙中(1)(2)(3)是否为正方形?为什么?
②图中(1)(2)(3)的面积分别是多少?
③图中(1)(2)的面积之和是多少?
④图中(1)(2)的面积之和与正方形(3)的面积有什么关系?为什么?
由此你能得到关于直角三角形三边长的关系吗?23、请你观察下列图形,直角三角形ABC的两条直角边的长分别为AC=7,BC=4,请你研究这个直角三角形的斜边AB的长的平方是否等于42+72?24、如下图,A、B两点都与平面镜相距4米,且A、B两点相距6米,一束光线由A射向平面镜反射之后恰巧经过B点.求B点到入射点的距离.25、如下图所示,△ABC中,AB="15"cm,AC="24"cm,∠A=60°,求BC的长.试卷答案1.[解析]
试题分析:根据勾股定理的逆定理与三角形的角和定理依次分析各项即可.
A、由b2=c2-a2得c2=a2+b2符合勾股定理的逆定理,故是直角三角形;
B、由a:b:c=3:4:5得c2=a2+b2符合勾股定理的逆定理,故是直角三角形;
C、由三角形三个角度数和是180°与∠C=∠A-∠B解得∠A=90°,故是故是直角三角形;
D、由∠A:∠B:∠C=12:13:15,与∠A+∠B+∠C=180°得∠A=54°,∠B=58.5°,∠C=67.5°,没有90°角,故不是直角三角形.
故选D.
考点:本题考查的是勾股定理的逆定理,三角形的角和定理
点评:解答本题的关键是熟记勾股定理的逆定理:如果三角形中两边的平方和等于第三边的平方,那么这个三角形一定是直角三角形.2.[解析]
试题分析:根据勾股定理的逆定理即可判断.
∵(m2-1)2+(2
m)2=(m2+1)2,
∴三角形为直角三角形,且斜边长为m2+1,
故选A.
考点:本题考查的是勾股定理的逆定理
点评:解答本题的关键是熟记勾股定理的逆定理:如果三角形中两边的平方和等于第三边的平方,那么这个三角形一定是直角三角形.3.[解析]
试题分析:根据勾股定理的逆定理列出方程解即可.
根据勾股定理的逆定理列出方程解则可,有42是斜边或者x2是斜边两种情况.
当42是斜边时,32+x2=42,x2=42-32=7;
当x2是斜边时,x2=32+42=52,
故选D.
考点:本题考查了勾股定理的逆定理
点评:在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,然后进行计算.注意本题有两种情况.4.[解析]
试题分析:根据勾股定理的逆定理依次分析各项即可.
A、,B、,D、,均不能组成直角三角形;
C、,能组成直角三角形,本选项正确.
考点:本题考查的是勾股定理的逆定理
点评:解答本题的关键是熟记勾股定理的逆定理:如果三角形中两边的平方和等于第三边的平方,那么这个三角形一定是直角三角形.5.[解析]
试题分析:根据勾股定理的逆定理与三角形的角和定理依次分析各项即可.
A、由b2=c2-a2得c2=a2+b2符合勾股定理的逆定理,故是直角三角形;
B、由a:b:c=3:4:5得c2=a2+b2符合勾股定理的逆定理,故是直角三角形;
C、由三角形三个角度数和是180°与∠C=∠A-∠B解得∠A=90°,故是故是直角三角形;
D、由∠A:∠B:∠C=12:13:15,与∠A+∠B+∠C=180°得∠A=54°,∠B=58.5°,∠C=67.5°,没有90°角,故不是直角三角形.
故选D.
考点:本题考查的是勾股定理的逆定理,三角形的角和定理
点评:解答本题的关键是熟记勾股定理的逆定理:如果三角形中两边的平方和等于第三边的平方,那么这个三角形一定是直角三角形.6.[解析]
试题分析:先根据勾股定理的逆定理判断出三角形是直角三角形,然后根据面积法求解.
:
∵AB2+AC2=62+82=100,BC2=102=100,
∴三角形是直角三角形.
根据面积法求解:
即
解得
故选B.
考点:本题考查的是勾股定理的逆定理,直角三角形的面积公式
点评:解答本题的关键是熟记勾股定理的逆定理:如果三角形中两边的平方和等于第三边的平方,那么这个三角形一定是直角三角形.7.[解析]
试题分析:根据勾股定理即可求得结果.
由题意得
考点:本题考查的是勾股定理的应用
点评:解答本题的关键是熟练掌握勾股定理:即任意直角三角形两直角边的平方和等于斜边的平方.8.[解析]
试题分析:首先根据方位角知该三角形是一个直角三角形.再根据路程=速度×时间.分别计算两条直角边是16×1.5=24,12×1.5=18.再根据勾股定理即可求得结果.
因为东南和东北方向互相垂直,
根据题意两条直角边为16×1.5=24,12×1.5=18,
根据勾股定理得,两船相距海里.
考点:本题考查的是勾股定理的应用
点评:解答本题的关键是熟练掌握勾股定理:即任意直角三角形两直角边的平方和等于斜边的平方.9.[解析]
试题分析:根据勾股定理即可得到结果。
由题意得,木板的长应取米.
考点:本题考查的是勾股定理的应用
点评:解答本题的关键是熟练掌握勾股定理:即任意直角三角形两直角边的平方和等于斜边的平方.10.[解析]
试题分析:由于②到③时等式两边都除以了a2-b2,如果a2-b2=0,根据等式的性质可知,此时不一定有③成立.
由a4+b2c2=b4+a2c2得:
a4-b4=a2c2-b2c2,
(a2+b2)(a2-b2)=c2(a2-b2),
∴(a2+b2)(a2-b2)-c2(a2-b2)=0,
∴(a2-b2)(a2+b2-c2)=0,
∴a2-b2=0或a2+b2-c2=0,
即a=b或c2=a2+b2,
∴△ABC为等腰三角形或直角三角形.
考点:本题考查的是勾股定理的逆定理
点评:解答本题的关键是熟记勾股定理的逆定理:如果三角形中两边的平方和等于第三边的平方,那么这个三角形一定是直角三角形.11.[解析]
试题分析:把已知条件写成三个完全平方式的和的形式,再由非负数的性质求得三边,根据勾股定理的逆定理即可判断△ABC的形状.
由已知得(a2-10a+25)+(b2-24b+144)+(c2-26c+169)=0
(a-5)2+(b-12)2+(c-13)2=0
由于(a-5)2≥0,(b-12)2≥0,(c-13)2≥0.
所以a-5=0,得a=5;
b-12=0,得b=12;
c-13=0,得c=13.
又因为132=52+122,即a2+b2=c2
所以△ABC是直角三角形.
考点:本题考查的是勾股定理的逆定理,非负数的性质
点评:解答本题的关键是熟记勾股定理的逆定理:如果三角形中两边的平方和等于第三边的平方,那么这个三角形一定是直角三角形.12.[解析]
试题分析:(1)利用完全平方公式,配方成完全平方的形式,再根据非负数的性质,求出a,b,c,由勾股定理判断三角形的形状;
(2)先将式子进行因式分解,再求得a、b、c的大小关系,从而判断出三角形的形状.
(1)∵a2+b2+c2+100=12a+16b+20c
∴(a2-12a+36)+(b2-16b+64)+(c2-20c+100)=0
即(a-6)2+(b-8)2+(c-10)2=0
∴a-6=0,b-8=0,c-10=0
即a=6,b=8,c=10
而62+82=100=102,∴a2+b2=c2
∴△ABC为直角三角形;
(2)(a3-a2b)+(ab2-b3)-(ac2-bc2)=0
a2(a-b)+b2(a-b)-c2(a-b)=0
∴(a-b)(a2+b2-c2)=0
∴a-b=0或a2+b2-c2=0
∴此三角形ABC为等腰三角形或直角三角形.
考点:本题考查的是勾股定理的逆定理
点评:解答本题的关键是熟记勾股定理的逆定理:如果三角形中两边的平方和等于第三边的平方,那么这个三角形一定是直角三角形.13.[解析]
试题分析:如图,以AP为边作等边△APD,连结BD.即可证得△ADB≌△ADC,再根据全等三角形的性质与勾股定理的逆定理证得∠BPD=90°,从而得到结果.
如图,以AP为边作等边△APD,连结BD.
则∠1=60°-∠BAP=∠2,
在△ADB和△APC中,
AD=AP.∠1=∠2,AB=AC
∴△ADB≌△ADC(SAS)
∴BD=PC=5,又PD=AP=3,BP=4
∴BP2+PD2=42+32=25=BD2
∴∠BPD=90°
∴∠APB=∠APD+∠BPD=150°.
考点:本题考查的是全等三角形的判定和性质,勾股定理的逆定理
点评:此解法利用旋转△APC到△ADB的位置,成功地把条件PA=3,PB=4,PC=5,集中到△BPD中,挖出了隐含的“直角三角形”这一条件.14.[解析]
试题分析:由勾股定理逆定理可得△ACD与△ABC均为直角三角形,进而可求解其面积.
∵42+32=52,52+122=132,
∴∠B=90°,∠ACD=90°
∴S四边形ABCD=S△ABC+S△ACD=×3×4+×5×12=6+30=36.
考点:本题考查的是勾股定理的逆定理,直角三角形的面积公式
点评:解答本题的关键是熟记勾股定理的逆定理:如果三角形中两边的平方和等于第三边的平方,那么这个三角形一定是直角三角形.15.[解析]
试题分析:根据勾股定理的逆定理即可判断.
∵72+242=252,122+352=372,
∴②③所代表的三角形是直角三角形.
考点:本题考查的是勾股定理的逆定理
点评:解答本题的关键是熟记勾股定理的逆定理:如果三角形中两边的平方和等于第三边的平方,那么这个三角形一定是直角三角形.16.[解析]
试题分析:根据三角形大边对大角的性质即可判断.
5cm所对的角是直角,因为在直角三角形中直角所对边最长.
考点:本题考查的是三角形的性质
点评:解答本题的关键是熟练掌握三角形大边对大角的性质.17.[解析]
试题分析:(1)先根据勾股定理的逆定理得到△ABC是直角三角形,再根据全等三角形的判定方法即可证得结论;
(2)根据全等三角形的性质即可证得结论;
(3)根据勾股定理的逆定理即可判断.
(1)△A′B′C′≌△ABC
理由:在Rt△A′B′C′中,B′C′=a,A′C′=b,∠C′=90°
由勾股定理得:(A′B′)2=a2+b2
又∵a2+b2=c2,∴(A′B′)2=c2则A′B′=c=AB
在△ABC和△A′B′C′中,AB=A′B′,BC=B′C′,AC=A′C′,
∴△ABC≌△A′B′C′
(2)由(1)可得∠C′=∠C,又∠C′=90°,所以∠C=90°.
(3)由(2)结论可知△ABC是Rt△.
由以上可得:如果三角形中两边的平方和等于第三边的平方,那么这个三角形一定是直角三角形.
考点:本题考查的是勾股定理的逆定理
点评:解答本题的关键是熟记勾股定理的逆定理:如果三角形中两边的平方和等于第三边的平方,那么这个三角形一定是直角三角形.18.[解析]
试题分析:要求CE的长,应先设CE的长为x,由将△ADE折叠使点D恰好落在BC边上的点F可得Rt△ADE≌Rt△AFE,所以AF=10cm,EF=DE=8-x;在Rt△ABF中由勾股定理得:AB2+BF2=AF2,已知AB、AF的长可求出BF的长,又CF=BC-BF=10-BF,在Rt△ECF中由勾股定理可得:EF2=CE2+CF2,即:(8-x)2=x2+(10-BF)2,将求出的BF的值代入该方程求出x的值,即求出了CE的长.
根据题意得:Rt△ADE≌Rt△AEF
∴∠AFE="90°,AF=10"cm,EF=DE
设CE="x"cm,则DE=EF=CD-CE=8-x
在Rt△ABF中由勾股定理得:
AB2+BF2=AF2,即82+BF2=102,
∴BF="6"cm
∴CF=BC-BF=10-6=4(cm)
在Rt△ECF中由勾股定理可得:
EF2=CE2+CF2,即(8-x)2=x2+42
∴64-16x+x2=x2+16
∴x=3(cm),即CE=3cm
考点:本题考查的是勾股定理,矩形的性质,折叠的性质
点评:解答本题的关键是熟练掌握勾股定理:即任意直角三角形两直角边的平方和等于斜边的平方.19.[解析]
试题分析:在侧面的直角三角形中,由勾股定理可得,直角三角形的斜边长.棚顶是以侧面的斜边为宽,棚的长为长的矩形,依据矩形的面积公式即可求解.
在直角三角形中,由勾股定理可得:直角三角形的斜边长为3m,
所以矩形塑料薄膜的面积是:3×12=36(m2).
考点:本题考查的是勾股定理的应用
点评:解答本题的关键是熟练掌握勾股定理:即任意直角三角形两直角边的平方和等于斜边的平方.20.[解析]
试题分析:(1)根据勾股定理求得该直角三角形的斜边,根据直角三角形的面积,求得斜边上的高等于斜边的乘积÷斜边;
(2)在(1)的基础上根据勾股定理进行求解.
(1)∵△ABC中,∠C=90°,AC="2.1"cm,BC="2.8"cm
∴AB2=AC2+BC2=2.12+2.82=12.25
∴AB="3.5"cm
∵S△ABC=AC·BC=AB·CD
∴AC·BC=AB·CD
∴CD===1.68(cm)
(2)在Rt△ACD中,由勾股定理得:
AD2+CD2=AC2
∴AD2=AC2-CD2=2.12-1.682
=(2.1+1.68)(2.1-1.68)
="3.78×0."42=2×1.89×2×0.21
=22×9×0.21×0.21
∴AD=2×3×0.21=1.26(cm)
∴BD=AB-AD=3.5-1.26=2.24(cm).
考点:此题考查了勾股定理
点评:解答本题的关键是熟记直角三角形斜边上的高等于两条直角边的乘积÷斜边.21.[解析]
试题分析:先根据题意画出图形,再根据勾股定理得出三角形的高,即可求解其面积.
如图:
等边△ABC中BC="12"cm,AB="AC=10"cm
作AD⊥BC,垂足为D,则D为BC中点,BD="CD=6"cm
在Rt△ABD中,AD2=AB2-BD2=102-62=64
∴AD="8"cm
∴S△ABD=BC·AD=×12×8=48(cm2)
考点:本题考查的是勾股定理
点评:解答本题的关键是熟练掌握勾股定理:即任意直角三角形两直角边的平方和等于斜边的平方.22.[解析]
试题分析:根据正方形的面积公式依次分析即可.
①图乙、图丙中(1)(2)(3)都是正方形.易得(1)是以a为边长的正方形,(2)是以b为边长的正方形,(3)的四条边长都是c,且每个角都是直角,所以(3)是以c为边长的正方形.
②图中(1)的面积为a2,(2)的面积为b2,(3)的面积为c2.
③图中(1)(2)面积之和为a2+b2.
④图中(1)(2)面积之和等于(3)的面积.
因为图乙、图丙都是以a+b为边长的正方形,它们面积相等,(1)(2)的面积之和与(3)的面积都等于(a+b)2减去四个Rt△ABC的面积.
由此可得:任意直角三角形两直角边的平方和等于斜边的平方,即勾股定理.
考点:本题考查的是勾股定理
点评:解答本题的关键是熟练掌握边长的平方即以此边长为边的正方形
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 写字楼专业培训知识课件
- 农家乐协议书
- 供排水泵站运行工劳动法规熟知度考核试卷及答案
- 协议书的端口
- 会员员工协议书
- 幼儿园租房合同协议书
- 自由锻锻工工具生命周期管理考核试卷及答案
- 2026届浙江省嘉兴市十学校数学七年级第一学期期末学业质量监测模拟试题含解析
- 河南省郑州一中2026届数学九上期末统考模拟试题含解析
- 山东省莱芜市莱城区茶业口镇腰关中学2026届数学九上期末达标检测模拟试题含解析
- 广东省2025年度初级注册安全工程师职业资格考试金属非金属矿山安全复习题及答案
- 湖南安全员c3考试试题及答案
- 2025年中学生心理健康测试题及答案
- 二年级防溺水教案
- 后厨设备安全操作培训课件
- 好风起二部合唱简谱致远音乐
- 电子辅料基础知识培训
- Unit 2 Ways to go to school Part A Let's talk 英语教学课件
- 无人机使用课件
- 柔性装配基础知识培训课件
- 十二经络课件
评论
0/150
提交评论