版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
SHANGHAIJIAOTONGUNIVERSITYProjectTitle:PlayingtheGameofFlappyBirdwithDeepReinforcementLearningGroupNumber:G-07GroupMembers:WangWenqingGaoXiaoningContents1 Introduction (10)endforEveryCstepsreset=:endforendforExperimentsThissectionwilldescribeouralgorithm’sparameterssettingandtheanalysisofexperimentresults.ParametersSettingsREF_Ref484591565\hFigure6illustratesourCNN’slayerssetting.Theneuralnetworkshas3CNNhiddenlayersfollowedby2fullyconnectedhiddenlayers.Table1showthedetailedparametersofeverylayer.HerewejustuseamaxpoolinginthefirstCNNhiddenlayer.Also,weusetheReLUactivationfunctiontoproducetheneuraloutput.FigureSEQFigure\*ARABIC6:ThelayersettingofCNN:thisCNNhas3convolutionallayersfollowedby2fullyconnectedlayers.Asfortraining,weuseAdamoptimizertoupdatetheCNN’sparameters.TableSEQTable\*ARABIC1:ThedetailedlayerssettingofCNNLayerInputFiltersizeStrideNumfiltersActivationOutputconv180×80×48×8432ReLU20×20×32max_pool20×20×322×2210×10×32conv210×10×324×4264ReLU5×5×64conv35×5×643×3164ReLU5×5×64fc45×5×64512ReLU512fc55122Linear2REF_Ref484591593\hTable1listsalltheparametersettingofDQN.Weuseadecayedrangingfrom0.1to0.001tobalanceexplorationandexploitation.What’smore,REF_Ref484591626\hTable2showsthatthebatchstochasticgradientdescentoptimizerisAdamwithbatchsizeof32.Finally,wealsoallocatealargereplaymemory.TableSEQTable\*ARABIC2:ThetrainingparametersofDQNParametersvalueObservesteps100000Exploresteps3000000Initial_epsilon0.1Final_epsilon0.001Replay_memory50000batchsize32learningrate0.000001FPS30optimizationalgorithmAdamResultsAnalysisWetrainourmodelabout4millionepochs.REF_Ref484591669\hFigure7showstheweightsandbiasesofCNN’sfirsthiddenlayer.Theweightsandbiasesfinallycentralizearound0,withlowvariance,whichdirectlystabilizeCNN’soutputQ-valueandreduceprobabilityofrandomaction.ThestabilityofCNN’sparametersleadstoobtainingoptimalpolicy.FigureSEQFigure\*ARABIC7:Left(right)figureisthehistogramofweights(biases)ofCNN’sfirsthiddenlayerREF_Ref484591680\hFigure8isthecostvalueofDQNduringtraining.Thecostfunctionhasaslowdowntrend,closeto0after3.5millionepochs.ItmeansthatDQNhaslearnedthemostcommonstatesubspaceandwillperformoptimalactionwhencomingacrossknownstate.Inaword,DQNhasobtaineditsbestactionpolicy.FigureSEQFigure\*ARABIC8:DQN’scostfunction:theplotshowsthetrainingprogressofDQN.Wetrainedourmodelabout4millionepochs.Whenplayingflappybird,ifthebirdgetsthroughthepipe,wegiveareward1,ifdead,give-1,otherwise0.1.REF_Ref484591694\hFigure9istheaveragereturnedrewardfromenvironment.Thestabiltiyinfinaltrainingstatemeansthattheagentcanautomaticallychoosethebestaction,andtheenvironmentgivesthebestrewardinturns.Weknowthattheagentandenvironmenthasenterintoafriendlyinteraction,guaranteeingthemaximaltotalreward.FigureSEQFigure\*ARABIC9:Theaveragereturnedrewardfromenvironment.Weaveragethereturnedrewardevery1000epochs.FromthisREF_Ref484591711\hFigure10,thepredictedmaxQ-valuefromCNNconvergesandstabilizesinavalueafterabout100000.ItmeansthatCNNcanaccuratelypredictthequalityofactionsinspecificstate,andwecansteadilyperformactionswithmaxQ-value.TheconvergenceofmaxQ-valuesstatesthatCNNhasexploredthestatespacewidelyandgreatlyapproximatedtheenvironmentwell.FigureSEQFigure\*ARABIC10:TheaveragemaxQ-valueobtainedfromCNN’soutput.WeaveragethemaxQ-valueevery1000epochs.REF_Ref484591726\hFigure11illustratestheDQN’sactionstrategy.IfthepredictedmaxQ-valueissohigh,weareconfidentthatwewillgetthroughthegapwhenperformtheactionwithmaxQ-valuelikeA,C.IfthemaxQ-valueisrelativelylow,andweperformtheaction,wemighthitthepipe,likeB.Inthefinalstateoftraining,themaxQ-valueisdramaticallyhigh,meaningthatweareconfidenttogetthroughthegapsifperformingtheactionswithmaxQ-value.FigureSEQFigure\*ARABIC11:TheleftmostplotshowstheCNN’spredictedmaxQ-valuefora100framessegmentofthegameflappybird.ThethreescreenshotscorrespondtotheframeslabeledbyA,B,andCrespectively.ConclusionWesuccessfullyuseDQNtoplayflappybird,whichcanoutperformhumanbeings.DQNcanautomaticallylearnknowledgefromenvironmentjustusingrawimagetoplaygameswithoutpriorknowledge.ThisfeaturegiveDQNthepowertoplayalmostsimplegames.Moreover,theuseofCNNasafunctionapproximationallowDQNtodealwithlargeenvironmentwhichhasalmostinfinitestatespace.Lastbutnotleast,CNNcanalsogreatlyrepresentfeaturespacewithouthandcraftedfeatureextractionreducingthemassivemanualwork.
ReferencesC.ClarkandA.Storkey.Teachingdeepconvolutionalneuralnetworkstoplaygo.arXivpreprintarXiv:1412.3409,2014.1.AlexKrizhevsky,IlyaSutskever,andGeoffHinton.Imagenetclassificationwithdeepconvolutionalneuralnetworks.InAdvancesinNeuralInformationProcessingSystems25,pages1106–1114,2012.GeorgeE.Dahl,DongYu,LiDeng,andAlexAcero.Context-dependentpre-traineddeepneuralnetworksforlarge-vocabularyspeechrecognition.Audio,Speech,andLanguageProcessing,IEEETransactionson,20(1):30–42,2012,1.RichardSuttonandAndrewBarto.ReinforcementLearning:AnIntroduction.MITPress,1998.BrianSallansandGeoffreyE.Hinton.Reinforcementlearningwithfactoredstatesandactions.JournalofMachineLearningResearch,5:1063–1088,2004.ChristopherJCHWatkinsandPeterDayan.Q-learning.Machinelearning,8(3-4):279–292,1992.HamidMaei,CsabaSzepesv´ari,ShalabhBhatnagar,andRichardS.Sutton.Towardoff-policylearningcontrolwithfunctionapproximation.InProceedingsofthe27thI
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年制造业管理专员招聘面试题库及参考答案
- 2025年临床实验室技术员招聘面试参考题库及答案
- 2025年旋转设备工程师招聘面试参考题库及答案
- 2025年高级设计师招聘面试参考题库及答案
- 2025年社交平台管理专员招聘面试题库及参考答案
- 2025年证券投资顾问招聘面试参考题库及答案
- 2025年小型企业顾问招聘面试题库及参考答案
- 2025年审计专员人员招聘面试题库及参考答案
- 2025年移动应用开发工程师招聘面试参考题库及答案
- 2025年招标专员人员招聘面试题库及参考答案
- 2025至2030全球与中国结冷胶行业市场规模分析及竞争策略与发展趋势分析与未来投资战略咨询研究报告
- 网络文学IP产业链全景图:2025年全产业链开发与价值实现深度报告
- 2025秋季石油工业出版社有限公司高校毕业生招聘考试参考试题及答案解析
- 中国对外贸易中心集团笔试题库
- 地塞米松鼓室内注射:内耳分布特征与糖皮质激素受体关联探究
- 组织客户篮球活动方案
- 2024-2025学年度辽宁铁道职业技术学院单招《英语》试卷附完整答案详解(必刷)
- 2025年宠物市场细分需求分析报告:宠物食品行业品牌建设与产品创新竞争力研究
- 隧道施工机械设备配置方案
- 医药行业耗材保障及应急措施
- 简易提升机安全知识培训课件
评论
0/150
提交评论