




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高等化工传递过程原理(研究生)全册配套完整课件3BasicConceptsFluxDrivingForce
ConstitutiveEquation
TransportPropertyFluxBulkMovementConvectivetransportConvectiveFluxSmallscalemoleculardisplacementMolecular(orDiffusive)transportMolecular(orDiffusive)FluxFlux=ConvectiveFlux+MolecularFluxFlux=(“concentration”)×(“transportvelocity”)TransportofChemicalSpeciesmassfractionmolefractionBulkvelocityorreferencevelocityofamixtureSpeciesvelocityrelativetothemixture:diffusivevelocitySpeciesFluxReferencevelocityMolarunitsMassunits0Ni
niv
Ji
jivM
JiM
jiMFluxrelationshipsTransformationsbetweenSpeciesFluxes
GradientEnergyfluxFluxofspeciesiTemperatureConcentrationofspecieiConcentrationofspeciesjElectricalpotentialPressureOtherexternalforcesConduction(Fourier)Diffusion-thermoeffect(Dufour)Thermaldiffusion(Soret)BinaryDiffusion(Fick)Multicomponentdiffusion(Maxwell-Stefan)Ionmigration(M-S)Pressurediffusion(M-S)M-SMolecularFlux=f(TransportProperties,Drivingforces)Drivingforces=GradientsDominantgradient:PrimarytransportpropertyOthergradients:SecondarytransportpropertiesConstitutiveEquationsforMolecularTransport
LinearFlux-GradientLaws
(ClassicConstitutiveEquations):
MolecularFlux=-TransportProperty×Gradient
HeatTransport--Fourier’sLawofConduction
MomentumTransport--Newton’sLawofViscosity
MassTransport—Fick’sLawofDiffusionFick’slawforbinarymixturesofAandBDiffusionofChemicalSpeciesMagnitudesofTransportCoefficientsBinaryDiffusivity(Fick’s)HeatConductionForisotropicmaterialsForanisotropicmaterialsMagnitudesofTransportCoefficientsThermalconductivityStressandMomentumFluxMagnitudesofTransportCoefficientsViscosityTransportcoefficients(Diffusivities)
Classicconstitutiveequations:MolecularFlux=-“Diffusivity”דConcentrationGradient”PrandtlnumberSchmidtnumberLewisnumberConvectionrelativetoDiffusionorconductionPecletnumberPeAmeasureofconvectivetransportrelativetomolecular-basedtransportMechanismofMolecularTransport
LimitationonLengthandTimeScales
LinearFlux-GradientLaws(ClassicConstitutiveEquations)forMolecularTransport:Flux=-(Transportproperty)×(Gradient)TheoreticalunderstandingoftransportphenomenainmolecularbasisThemoleculartransportofenergy,speciesandmomentumarebasedultimatelyontherandommotionsofmolecules.Models:todescriberandommotionsofmolecules,andrelatethemolecularmotionstotransportfluxesLatticeModelAccordingtoelementarykinetictheoryforlowdensitygases:ApplicationofLatticeModeltoGasesTheKineticTheoryofGasesReference:Sears,F.W.,AnIntroductiontoThermodynamics,TheKineticTheoryofGases,andStatisticalMechanics,2nded.,Addison-Wesley,Reading,MA.1953Hirschfelder,J.O.,Curtiss,C.F.,andBird,R.B.,TheMolecularTheoryofGasesandLiquids,J.Wiley&Sons,NewYork,1954Chapman–EnskogTheoryLennard-Jones(6-12)potential:GasesLiquidsSolidsChapman,S.andCowling,T.G.,TheMathematicalTheoryofNon-UniformGases,3rded.,UniversityPress,Cambridge,1970Chapman–EnskogTheoryandGasViscosityChapman–EnskogTheoryandGasThermalConductivityandDiffusivityStokes-EinsteinModelDiffusioninLiquidsHiss,T.G.andCussler,E.L.,“DiffusioninHighViscosityLiquid”,AIChEJ.,19,698(1973)Eyring’sratetheoryFreeVolumeGlasstone,S.,Laidler,K.J.,andEyring,H.,TheoryofRateProcesses,McGraw-Hill,NewYork(1941)Eyring,H.,“Viscosity,Plasticity,andDiffusionasExamplesofAbsoluteReactionRates”,J.Chem.Phys.,4,283(1936)DiffusioninLiquidsTransportpropertiesdatasource1.J.Millat,J.H.Dymond,C.A.NietodeCastro,“TransportPropertiesofFluids:TheirCorrelation,PredictionandEstimation”,NewYork,IUPAC,CambridgeUniversityPress,19962.CarlL.Yaws,“HandbookofTransportPropertiesData:Viscosity,ThermalConductivity,andDiffusionCoefficientsofLiquidsandGases”,Houston,Tex,GulfPub.Co.,19953.R.C.Reid,J.M.Prausnitz,B.E.Poling,“ThePropertiesofGasesandLiquids”4thed.,McGraw-Hill,NewYork,1987LatticeModelforDiffusivitiesinSolidsSubstitutionaldiffusionInterstitionaldiffusionInterstitionaldiffusionSubstitutionaldiffusionElementaryjump-ratetheoryLimitationonLengthScaleEstimatesofminimumsystemdimensionsforcontinuumtransportmodelsusingbulkpropertiesBasedonanidealgasatP=1atmandT=293K,withM=30g/molBasedondensity=1000kg/m3,andM=30g/molLimitationonLengthScaleLimitationonTimeScaleConservationEquationsforHeatandMassTransferTransportModel:EquationsgoverningthetransportphenomenaThreemajorparts:
ConstitutiveequationsConservationequationsforinteriorpointsConservationequationsforboundarypointsGeneralFormsofConservationEquationsControlvolumeforformulatingadesiredbalanceequationAunitvectorndefinedateverypointonthesurfaceisnormaltothesurfaceanddirectedoutward.ConservationEquationsforFiniteVolumesAfixedcontrolvolume:,V=constant,S=constantAmovingcontrolvolume:,V=V(t),S=S(t)TheLeibnizformulafordifferentiatingavolumeintegralControlvolumeenclosingpartofaninterfaceForthepossibilityofasourcetermataninternalinterface,iftherateofformationperunitareaofinterfaceisdonatedasBs(r,t)
ConservationEquationsforPointsinsideaPhase
ThedifferentialformofthegeneralconservationequationThesurfaceintegralisconvertedtoavolumeintegralbytheapplicationofthedivergencetheorem.DifferentialOperationsinRectangularCoordinatesGradientforadifferentiablescalarfunctionDivergenceforadifferentiablevectorfunctionLaplacianforadifferentiablescalarfunctionDifferentialOperationsinCylindricalCoordinatesGradientforadifferentiablescalarfunctionDivergenceforadifferentiablevectorfunctionLaplacianforadifferentiablescalarfunctionDifferentialOperationsinSphericalCoordinatesGradientforadifferentiablescalarfunctionDivergenceforadifferentiablevectorfunctionLaplacianforadifferentiablescalarfunctionPointConservationEquationsforInterfacesTheboundaryconditions
ControlvolumeenclosingpartofaninterfacebetweenphaseAandphaseB.TheSurfaceSAandSBareeachaconstantdistancelfromtheinterface.ConvectiveandDiffusiveFluxesThegeneralconservationequationataninteriorpointisrewrittenas:ThebalanceataninterfaceisSummaryforGeneralConservationEquationsGeneralconservationequationsforinteriorpointsandinterfacesinteriorpointspointsatinterfacesWiththemassaveragevelocityFluxContinuityandSymmetryConditionswithinaGivenPhaseF
isacontinuousfunctionofpositionatallinteriorpoint.
symmetryplaneaxisymmetricorsphericallysymmetricTotalmassconservationatinteriorpointsContinuityEquation:applicationofthegeneralconservationequationstototalmassContinuityEquationtionRectangular:Cylindrical:Spherical:
TotalmassconservationatinterfaceAlternativeConservationEquationsMaterialderivative(orsubstantialderivative):
iftheamountofanyquantityperunitmassisdenotedas
ConservationofHeatForsolidsorpurefluidsConservationofHeatRectangular:Cylindrical:Spherical:
HeatTransferatInterfaces1.InterfacialEnergyBalancefortheusualsituation
HeatTransferatInterfaces2.ThermalEquilibriumataninterfaceUsuallyassumption:Certainsituations:3.SymmetryConditionssymmetryplaneaxisymmetricorsphericallysymmetricConservationofChemicalSpeciesConstantandWithFick’sLawforConservationofChemicalSpeciesRectangular:Cylindrical:Spherical:
MassTransferatInterfacesInterfacialSpeciesBalanceSpeciesEquilibriumatInterfaceSymmetryConditionssymmetryplaneaxisymmetricorsphericallysymmetricAnalysisonMassTransfer(I)
SteadyandTransientProblemsTransportofChemicalSpeciesFluxesofChemicalSpeciesReferencevelocityMolarunitsMassunits0Ni
niv
Ji
jivM
JiM
jiMFluxrelationshipsDiffusionofChemicalSpeciesFick’slawforbinarymixturesofAandBOne-DimensionalSteadyProblemsExample1:DirectionalSolidificationofaDiluteBinaryAlloyExample2:Diffusioninabinarygaswithaheterogeneousreaction
Example3:DiffusioninadiluteliquidsolutionwithareversiblehomogeneousreactionExample4:TransientdiffusioninasolidfromasurfacefixedconcentrationDopingofsemiconductorsI.C.C=0,y≥0,t=0B.C.C=Cs,y=0C=0,y→∞
TransientProblemsSimilaritymethod(combinationofvariables)TheErrorFunctionDopingofsemiconductorsA2mmthicksiliconwaferistobedopedwithantimony(Sb)inordertocreateap-typeregion.ThiscanbedonebypassingaSbCl3/H2gasmixtureoverthesurfaceofthewaferat1200oC,whichfixesthesurfaceSbconcentrationat1023atoms/m3.Supposethatthedonordensity(whichisjustanothertermfortheSbconcentration)ishopedtobegreaterthanorequalto3×1022/m3,overadepthof1μmbelowthesurface.Determinehowlongthewafershouldbeexposedtothisatmosphereinordertoachievethis.Example5:TransientdiffusioninaSymmetricSlab>0AnalysisonMassTransfer(II)
TransportofChemicalSpeciesCharacteristictimefordiffusion
CharacteristictimeforheatconductionInfiniteorsemi-infinitedimensionapproximationPseudo-steadyApproximationPseudo-steadyProblemsExample6:Pseudo-steady
DiffusioninaMembranePseudo-steadyapproximationExample7:Pseudo-steadyEvaporationofaColumnofLiquidAnalyticalExpressionsofMassTransferCoefficientsfromModelsConcentrationprofileinliquidFilmModelforInterfacialMassTransfer
ConcentrationprofileattimetinasurfaceelementUnsteadyModelsforInterfacialMassTransferSurfaceagedistributionfunctionforpenetrationmodelPenetrationModelforInterfacialMassTransferDistributionfunctionofageofsurfaceelementsforrandomsurfacerenewalmodelSurfaceRenewalModelforInterfacialMassTransferMasstransferinalaminarflowInthiscase,apuresolventflowinglaminarlyinacylindricaltubesuddenlyentersasectionwherethetube’swallsaredissolving.Theproblemistocalculateshowthemasstransfercoefficientvarieswiththefluid’sflowandthesolute’sdiffusion.Inotherwords,itfindsthemasstransferasafunctionofquantitieslikeReynoldsandSchmidtnumbers.Forforcedflowsinshorttubes(smallξ),solutetransferoccursmainlynearthewall.ThethinnessoftheregionofinterestmakesthecurvatureterminLapalciannegligible.Thefluidfarawaythetube’swall(nearthetube’saxis)ispuresolvent.Levequeapproximation:theneglectofsurfacecurvatureandlinearizationofthevelocityprofilegammafunctionFromexperiments,theSherwoodnumberintheearlypartoftheentranceregion:MassTransferCoupledwithChemicalReactionTransportofChemicalSpeciesHeterogeneousReactionHomogeneousReactionEffectofTransportPhenomenaonReactionOctaveLevenspiel,Ind.Eng.Chem.Res.1999,38,4140-4143EffectsofReactiononMassTransferTwodistincteffectsofchemicalreactionsonmasstransfer:TomaintainahighconcentrationdifferenceToenhancetherateatgivenlevelofconcentrationdifference
ThemasstransferrateenhancementbyhomogeneousreactionTherateenhancementfactorI:KeypointsaboutrateenhancementfactorIRatiooftheratesatthesameconcentrationdifference
orkA0
,dependedontherealfluidmechanics;theanalyticalexpressionisunavailablefromfirstprinciplesorkA,morecomplex,nohopetogettheanalyticalexpressionfromfirstprinciplesTheratioIturnsouttobealmostindependentofthefluidmechanicsinvolved;canbedevelopedonthebasisofverycrudemodelsofthefluidmechanicsinvolvedI
is,ingeneral,acomplicatedfunctionofthecompositionofthephasesinvolved;simplifiedequationsemergefromtheconsiderationofthelimitingconditionsReactiontimetrMasstransfertimetmDimensionlessratioΦ
Φ=tm/tr
Ameasureoftherelativerateofreactiontomasstransfer
I=f(Φ)acomplexfunctionSlowreactionregime:Φ<<1I=1Fastreactionregime:Φ>>1Instantaneousreactionregime(uplimit):PhysicalinterpretationonrateenhancementeffectCase:onlyonereactionmaytakesplaceinonephasewiththechemicalkinetic:
Usingfilmtheoryforthedilutesolution,onedimensionalandsteadycase
SteeperconcentrationgradientattheinterfaceEnhancementfactorlargerthanunityTheconditionwheretheenhancementeffectisnegligible:Averagecurvature<<Averagegradient/filmthickness
SlowReactionΦ<0.2Thespeciesconcentrationrelationships
FastReactionAmajorsimplification:Φ>>1InstantaneousReactionWithfilmmodelandFick’slaw102~103PhysicalinterpretationofmasstransferwithinstantaneousirreversiblereactionTheSlow-FastTransitionThetransitionregionaroundΦ=1Withfilmtheory
ForafirstorderirreversiblereactionfilmtheorysurfacerenewaltheoryTheFast-InstantaneousTransition
ReferencesandFurtherReadingsAstarita,G.,Savage,D.W.andBisio,A.GasTreatingwithChemicalSolvents,NewYork,Wiley,1983Cussler,E.L.Diffusion,3rded.,CambridgeUniversityPress,NewYork,2007MulticomponentmasstransferdrivenbyseveraldrivingforcesReviewonFick’sLawMolarfluxwithrespecttomolaraveragevelocityMolarfluxwithrespecttomassaveragevelocityFailuresofFick’sLawCaseI:MulticomponentsystemsFick’slawisinvalid.ConventionalApproachesformoleculartransport(Fick’sLaw):Transferfluxofeachcomponentisproportionalitsownconcentrationgradient.Validonlyforcertainspecialcases:IdealbinarysystemVerydilutesystem
Forn-componentsystemsMolarfluxwithrespecttomassaveragevelocityMatrixRepresentationTHEGENERALIZEDFICK’SLAWMolarfluxwithrespecttomolaraveragevelocityMolarfluxwithrespecttovolumeaveragevelocityMassfluxwithrespecttomassaveragevelocityAlternativeFormsoftheGeneralizedFick’sLawTransformationsbetweenFick’sDiffusivitiesOntheDijM,Dij,DijVorDijωetc...ConclusionontheFick’sLawformultcomponentsystems:OtherExamplesofFailureofFick’sLaw
Fick’slawisonlyvalidforconcentrationdrivingforceDrivingForcesforDiffusionCompositiondrivingforce(chemicalpotentialgradientatconstantTandP)ElectricalpotentialgradientPressuregradientTemperaturegradientOtherexternalfieldgradientsFick’slawisnotvalidforconfinedspaces(suchasmicro-/nano-poroussystems).OnFick’sLawKeypoints:.5.Maxwell-StefanTheoryThespeciesvelocityisdeterminedbyseveralfactors:ThemovementofthemixtureaswholeThedrivingforcesofthespeciesforrelativemovementFrictionofthespecieswithitssurroundingsInthemotionofamolecularspecies,itstotaldrivingforceandtotalfrictionarebalancedeachotherDrivingForcesPotentialGradient
Potentialgradient:Itcanbeignored!TotalDrivingForceCompositiondrivingforcePressuredrivingforceElectricaldrivingforceTemperaturedrivingforceothersAboutdrivingforcesAspeciesisdrivenbyitsownpotentialgradientThegravitypotentialgradientisratherunimportantThegradientofthechemicalpotentialismuchmoreimportantExternalfieldgradientsareotherimportantdrivingforcesFrictionResistanceFrictionofjoniinonemoleofthemixture(xi,i=1,2,…,n):Totalfrictiononi:(Maxwell-Stefandiffusivity)Constitutiveequation(Maxwell-Stefan)Balance:Drivingforce+Friction=0(totaldrivingforceoni)=-(totalfrictiononi)GeneralizedMaxwell-StefanEquation
MatrixFormulationoftheMaxwell-StefanEquations
Forbinarysystems:Fordilutesystems:ForonetracecomponentsystemsForsystemswithidenticaldiffusivitiesBOOTSTRAPPROBLEMTheGeneralizedBootstrapEquationFluxeswithrespecttoafixedpointTheGeneralizedBootstrapEquationEquimolarCounterdiffusionStefanDiffusionFluxRatiosSpecifiedExamplesofthebootstrapproblemSummaryonM-SEquationsTheconstitutiveequationofaspeciescontainsdrivingforcesonthespeciesandfrictiontermswithallotherspecies.ThefrictiontermscontainsanewtypediffusivityThenumberofindependentconstitutiveequationsisonelessthanthenumberofcomponents.Toobtainvelocitiesorfluxeswithrespecttoaphaseinterfaceorafixedcoordinatesystem,thebulkvelocityofthemixtureoranextra‘bootstrap’relationisneeded.GeneralizedMaxwell-StefanEquation
MulticomponentmasstransferdrivenbyseveraldrivingforceswithapplicableCaseI:MoleFractionGradientwithoutFluxThesystemisatsteady.Thegasisideal,isothermalandisobaric.Bootstrapequations:Maxwell-Stefanequations:MolarfractionandfluxofspeciesC:MolarfractionandfluxofspeciesA:InthecaseofDiscreteMaxwell-StefanEquation
FortheonedimensionprobleminathinfilmSteady,nohomogeneousreactionandonedimensionproblemsinarectangularcoordinatesystemCaseII:GasdiffusionwithHeterogeneousReactionToestimatetheoverallrateofthereactionofethanolBootstrapequations:Maxwell-Stefanequations:ThesolutionofthedifferentialequationsyieldsDiscreteMaxwell-Stefanequations:ThesolutionofthediscreteequationsyieldsM-SapproachforelectrolytesKeypoints:Species:ionsandsolventmoleculesElectroneutralityrelationBootstrapequationElectricdrivingforce(important)Fordilutesolutionofstagnantwater
FordilutesolutionofstagnantwaterFortheonedimensionprobleminsideathinfilm:steadyandnohomogeneousreactioninarectangularcoordinatesystematroomtemperatureCaseIII:ElectroneutralityZeroelectriccurrentM-SequationsCaseIV:PolarizationinelectrolysisM-Sequations:bootstraps:Limitingcurrentwhen:atroomtemperature专题报告Maxwell-Stefan方法在传质过程模型化中的应用近期国际刊物文献(不能是review)
.选择自己感兴趣的主题,限于Maxwell-Stefan方法。精读:详细推导其中的关系式,从其所引用的原始文献中找出所省略掉的内容。12月9日交原文和报告(电子版给助教)
用离散型Maxwell-Stefan方程预测盐酸溶液中加入痕量氯化钠时钠离子的扩散方向(参见讲义中的图7.5和图7.7;膜厚度用10微米)。Problem4onpage181Maxwell-StefanDiffusivityRelationshipBetweenFickandMaxwell-StefanDiffusionCoefficientsOnlywithcompositiondrivingforceForbinary(1-2)systems:M-SdiffusivitiesingasesUsingbinarygasdiffusivitiesinmulticomponentcalculationsM-SdiffusivitiesinliquidsForbinarysystems:Thermodynamicfactorforthesystemethanol-waterat40°Cobtainedfromdifferentactivitycoefficientmodels.ParametersfromGmehlingandOnken(1977ffVol.I/lap.133).Fordilutebinaryliquidmixtures:Wilke-ChangEquation=diffusioncoefficientofspeciesi(thesolute)ininfinitelylowconcentrationinspeciesj(thesolvent)[cm2/s]Mj
=molarmassofthesolvent[g/mol]T=temperature[K]=viscosityofthesolvent[mPas=cP]Vi=molarvolumeofsolute1atitsnormalboilingpoint[cm3/mol]associationfactorforthesolventCaldwellandBabb(1956)recommendedbyDannerandDaubert(1983)Vignes(1966)recommendedbyReid(1987)LefflerandCullinan(1970)ConcentratedbinaryliquidmixturesMaxwell-StefanDiffusionCoefficientforMulticomponentLiquidMixturesMaxwell-Stefandiffusioncoefficientsfortheternarysystem2-propanol(l)-water(2)-glycerol(3)andthebinaries2-propanol-glycerolandwater-glycerolGeneralizedVignesEquationThreediffusivitiesinthemixturetoluene(1)-chlorobenzene(2)-bromobenzene(3)at30°C.Thetrianglesarethebest-fitlogarithmicinterpolationsKooijmanandTaylor(1991)Maxwell-StefandiffusioncoefficientpredictedbygeneralizedVignesEquationforanonidealliquidmixtureWesselinghandKrishna(1990)NaClaqueoussolutionsat25oC,atvarioussaltconcentrations.Numberingis1=Na+;2=Cl-;3=H2OLaity,R.W.,DiffusionofIonsinanElectricField,J.Phys.Chem.,67,671-676(1963)M-SdiffusivitiesinElectrolytesolutionsDiffusivitiesinsodiumchloridesolutionsIon-WaterdiffusivitiesinaqueoussolutionsCation-aniondiffusivitiesItisnotveryaccuratewithdeviationsupto30%.Evenso,itcanbeusefulbecauseion-ionfrictionisoftenasmallpartofthetotalfrictionduetolowionicconcentrations,soweneednotevaluateitaccuratelyDiffusivitiesofionsoflikechargeOneofthefewcasesinwhichMaxwell-Stefandiffusivitiesarenegative.Thefrictionofanionwithitssurroundingstendstobereducedbyaddingionsoflikecharge.Theneteffectmaynotbeareduction,becauseionsofunlikechargemustalsobeaddedtoretainelectroneutrality.Maxwell-StefanapproachvsFickequationsForaternarymixturewithonlyconcentrationgradientsM-S:Fick:CaseI:anidealternarygasmixtureFickdiffusioncoefficientsplottedasafunctionofcompositionforthethreepossiblechoicesof"component3."ThethreeMaxwell-StefandiffusioncoefficientsinthesystemH2-N2-CC12F2.NotethattheMaxwell-Stefancoefficientsareindependentofcomposition.TheMaxwell-StefandiffusioncoefficientspredictedusingageneralizedVignesequationforanonidealliquidmixtureCaseII:anonidealternaryliquidmixtureTheFickdiffusioncoefficientsasafunctionofcompositionandcomponentnumberingforanonidealliquidmixtureMSFickSimplebehaviorofcoefficients+-Independenceofreferenceframe+-Easilyextendedtootherdrivingforces+-Numberofcoefficientsn(n-1)/2(n-1)2Coeff’sindependentofdrivingforces+-Coefficientsindependentofsequence+-Integrationwiththermodynamics+-Lookslike'chemicalengineering'-+AdvantagesanddisadvantagesofthetwodescriptionsEffectiveDiffusivityMethodsforMulticomponentDiffusionDefinitions:Acceptabletheoretically?RelationshipBetweenEffectiveandMaxwell-StefanDiffusionCoefficients:ForthecasesofRelationshipBetweenEffectiveandFickDiffusionCoefficients:AllbinarydiffusioncoefficientsequalIndilutemixtureswhereonecomponentisinalargeexcessWhenspeciesidiffusesthroughn-1stagnantgasesLimitingCases:WilkeEquationOtherEquationsforEffectiveDiffusivity12MassTransferinPoresDoyouremember?Threemainresistanceswithintwophases
SchematicdiagramofadsorbentorcatalystparticledepictingthethreemaindiffusionresistancesMacropore>50nmMesopore2~50nmMicropore<2nm
Poresizedistributionofzeolite-X,molecularsievecarbonandactivatedcarbonThemechanismsofmasstransferinaporeThreeContributionstoMassFluxFluxofthespecieswithinaporousmedium
Contributionsofbulk,KnudsonandsurfacediffusionfortransferofH2Sacrossacatalyticmembrane(350nmpores)carryingtheClausreaction:2H2S+SO2=3/8S8+2H2O
H2SfluxacrosmembranceThedustygasmodelThemostconvenientapproachtomodelingcombinedbulkandKnudsendiffusionAssumptions:ThedustconcentrationC'n+1isspatiallyuniformThedustismotionless,sothatN'n+1=0ThemolarmassofthedustparticlesEffectiveMaxwell-StefanDiffusivitiesGeneralizationtonon-idealfluidmixtureEffectiveKnudsenDiffusivitiesMatrixFormForidealgasesForidealmixtureswithoutexternalforcesForidealgaseousmixturesViscousflowMembraneProcessesPressuregradientinporousmediumgaseousmixtures
三元气体混合物He(1)-Ne(2)-Ar(3)扩散通过一个惰性多孔膜。膜内的孔可以看作是平行圆柱孔,膜的空隙率为70%。试确定在100nm、200nm和300nm三种孔径条件下,三个组分的稳态传质通量和方向。已知条件如下:上游压力P0=210×103Pa,下游压力Pδ=190×103Pa,温度T=300K,气体粘度μ=22×10-6Pa·s,膜厚度δ=9.6×10-3m,膜两侧的组成为:x10=0.4x1δ=0.4x20=0.4x2δ=0.3x30=0.2x3δ=0.3
组分在压力为100×103Pa和温度为300K的主体相气体中的二元Fick扩散系数为D12=1.068×10-4
㎡/sD13=0.724×10-4
㎡/sD23=0.316×10-4
㎡/s
ProblemSurfaceDiffusionThemechanismsofmasstransferinaporeThreeContributionstoTotalMassFluxFluxofthespecieswithinaporousmediumSinglefilediffusion(SFD)mechanism:Forthecaseinwhichthemoleculesaretoolargetopassoneanother,themechanismofcountersorptioncannotprevailbecausethereisaroomforonlyonetypeofmolecularspeciesatanygiventime.Completemechanism:Forthecaseinwhichthemoleculesaresmallenoughtopassoneanotherwithinalargeroom,thepossibilityofcountersorptioncannotberuledout.Maxwell-StefanequationforsurfacediffusionMaxwell-Stefanequationsforsinglefilediffusion(SFD)CompleteMaxwell-StefanequationsforsurfacediffusionMaxwell-StefansurfacediffusivityIfthejumpfrequencyremainsconstant,independentofsurfacecoverageIfthejumpfrequencydecreaseswithsurfacecoverageMicroporediffusionisanactivatedprocessMaxwell-Stefanmicroporediffusivityofn-butaneinsilicalite-1Countersorptioncoefficient:
theinteractionofadsorbatei–adsorbatejThesurfacechemicalpotentialgradientsForgaseousmixtureForliquidmixtureatnottoohighpressurefordilutesolutionThesurfacediffusionfluxesCompleteMaxwell-StefanequationSFDMaxwell-StefanequationTheMatrixform:ThedefinitionofamatrixofFicksurfacedif
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 对半入股购车合同(标准版)
- 科学视角下的端午习俗
- 榆林供销集团有限公司招聘考试真题2024
- 难点解析人教版八年级物理上册第4章光现象定向训练试题(含答案及解析)
- 服务方案及质量保障措施
- 考点解析人教版八年级上册物理《物态变化》章节练习试题(含答案解析)
- 重难点解析人教版八年级物理上册第5章透镜及其应用-透镜定向测评试题(含答案解析)
- 难点解析人教版八年级物理上册第4章光现象-光的折射章节测试试题(含解析)
- 2025年人教版高中英语原因状语从句形式练习题50题及答案
- 2025年金属冶炼单位安全生产管理人员考试(金属冶炼铁合金冶炼、锰冶炼、铬冶炼)仿真试题及答案四
- 福建成人高考考试题库及答案
- 国家基层高血压防治管理指南(2025年)解读课件
- 2025年营养指导员考试模拟试题库(含答案)
- 医院科室医疗质量与安全持续改进记录(12个月)
- 2025年江西省高考生物试卷真题(含标准答案及解析)
- 酒厂安全员知识培训课件
- 2025至2030年中国不良资产管理行业发展潜力分析及投资方向研究报告
- 腹壁切口疝诊疗指南(2024版)解读课件
- 写字楼物业管理服务投标方案
- 销售手册销售技巧与客户管理指南大全
- 2025年4月自考12340学前儿童发展试题及答案含评分标准
评论
0/150
提交评论