高等化工传递过程原理(研究生)全册配套完整课件3_第1页
高等化工传递过程原理(研究生)全册配套完整课件3_第2页
高等化工传递过程原理(研究生)全册配套完整课件3_第3页
高等化工传递过程原理(研究生)全册配套完整课件3_第4页
高等化工传递过程原理(研究生)全册配套完整课件3_第5页
已阅读5页,还剩299页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

高等化工传递过程原理(研究生)全册配套完整课件3BasicConceptsFluxDrivingForce

ConstitutiveEquation

TransportPropertyFluxBulkMovementConvectivetransportConvectiveFluxSmallscalemoleculardisplacementMolecular(orDiffusive)transportMolecular(orDiffusive)FluxFlux=ConvectiveFlux+MolecularFluxFlux=(“concentration”)×(“transportvelocity”)TransportofChemicalSpeciesmassfractionmolefractionBulkvelocityorreferencevelocityofamixtureSpeciesvelocityrelativetothemixture:diffusivevelocitySpeciesFluxReferencevelocityMolarunitsMassunits0Ni

niv

Ji

jivM

JiM

jiMFluxrelationshipsTransformationsbetweenSpeciesFluxes

GradientEnergyfluxFluxofspeciesiTemperatureConcentrationofspecieiConcentrationofspeciesjElectricalpotentialPressureOtherexternalforcesConduction(Fourier)Diffusion-thermoeffect(Dufour)Thermaldiffusion(Soret)BinaryDiffusion(Fick)Multicomponentdiffusion(Maxwell-Stefan)Ionmigration(M-S)Pressurediffusion(M-S)M-SMolecularFlux=f(TransportProperties,Drivingforces)Drivingforces=GradientsDominantgradient:PrimarytransportpropertyOthergradients:SecondarytransportpropertiesConstitutiveEquationsforMolecularTransport

LinearFlux-GradientLaws

(ClassicConstitutiveEquations):

MolecularFlux=-TransportProperty×Gradient

HeatTransport--Fourier’sLawofConduction

MomentumTransport--Newton’sLawofViscosity

MassTransport—Fick’sLawofDiffusionFick’slawforbinarymixturesofAandBDiffusionofChemicalSpeciesMagnitudesofTransportCoefficientsBinaryDiffusivity(Fick’s)HeatConductionForisotropicmaterialsForanisotropicmaterialsMagnitudesofTransportCoefficientsThermalconductivityStressandMomentumFluxMagnitudesofTransportCoefficientsViscosityTransportcoefficients(Diffusivities)

Classicconstitutiveequations:MolecularFlux=-“Diffusivity”דConcentrationGradient”PrandtlnumberSchmidtnumberLewisnumberConvectionrelativetoDiffusionorconductionPecletnumberPeAmeasureofconvectivetransportrelativetomolecular-basedtransportMechanismofMolecularTransport

LimitationonLengthandTimeScales

LinearFlux-GradientLaws(ClassicConstitutiveEquations)forMolecularTransport:Flux=-(Transportproperty)×(Gradient)TheoreticalunderstandingoftransportphenomenainmolecularbasisThemoleculartransportofenergy,speciesandmomentumarebasedultimatelyontherandommotionsofmolecules.Models:todescriberandommotionsofmolecules,andrelatethemolecularmotionstotransportfluxesLatticeModelAccordingtoelementarykinetictheoryforlowdensitygases:ApplicationofLatticeModeltoGasesTheKineticTheoryofGasesReference:Sears,F.W.,AnIntroductiontoThermodynamics,TheKineticTheoryofGases,andStatisticalMechanics,2nded.,Addison-Wesley,Reading,MA.1953Hirschfelder,J.O.,Curtiss,C.F.,andBird,R.B.,TheMolecularTheoryofGasesandLiquids,J.Wiley&Sons,NewYork,1954Chapman–EnskogTheoryLennard-Jones(6-12)potential:GasesLiquidsSolidsChapman,S.andCowling,T.G.,TheMathematicalTheoryofNon-UniformGases,3rded.,UniversityPress,Cambridge,1970Chapman–EnskogTheoryandGasViscosityChapman–EnskogTheoryandGasThermalConductivityandDiffusivityStokes-EinsteinModelDiffusioninLiquidsHiss,T.G.andCussler,E.L.,“DiffusioninHighViscosityLiquid”,AIChEJ.,19,698(1973)Eyring’sratetheoryFreeVolumeGlasstone,S.,Laidler,K.J.,andEyring,H.,TheoryofRateProcesses,McGraw-Hill,NewYork(1941)Eyring,H.,“Viscosity,Plasticity,andDiffusionasExamplesofAbsoluteReactionRates”,J.Chem.Phys.,4,283(1936)DiffusioninLiquidsTransportpropertiesdatasource1.J.Millat,J.H.Dymond,C.A.NietodeCastro,“TransportPropertiesofFluids:TheirCorrelation,PredictionandEstimation”,NewYork,IUPAC,CambridgeUniversityPress,19962.CarlL.Yaws,“HandbookofTransportPropertiesData:Viscosity,ThermalConductivity,andDiffusionCoefficientsofLiquidsandGases”,Houston,Tex,GulfPub.Co.,19953.R.C.Reid,J.M.Prausnitz,B.E.Poling,“ThePropertiesofGasesandLiquids”4thed.,McGraw-Hill,NewYork,1987LatticeModelforDiffusivitiesinSolidsSubstitutionaldiffusionInterstitionaldiffusionInterstitionaldiffusionSubstitutionaldiffusionElementaryjump-ratetheoryLimitationonLengthScaleEstimatesofminimumsystemdimensionsforcontinuumtransportmodelsusingbulkpropertiesBasedonanidealgasatP=1atmandT=293K,withM=30g/molBasedondensity=1000kg/m3,andM=30g/molLimitationonLengthScaleLimitationonTimeScaleConservationEquationsforHeatandMassTransferTransportModel:EquationsgoverningthetransportphenomenaThreemajorparts:

ConstitutiveequationsConservationequationsforinteriorpointsConservationequationsforboundarypointsGeneralFormsofConservationEquationsControlvolumeforformulatingadesiredbalanceequationAunitvectorndefinedateverypointonthesurfaceisnormaltothesurfaceanddirectedoutward.ConservationEquationsforFiniteVolumesAfixedcontrolvolume:,V=constant,S=constantAmovingcontrolvolume:,V=V(t),S=S(t)TheLeibnizformulafordifferentiatingavolumeintegralControlvolumeenclosingpartofaninterfaceForthepossibilityofasourcetermataninternalinterface,iftherateofformationperunitareaofinterfaceisdonatedasBs(r,t)

ConservationEquationsforPointsinsideaPhase

ThedifferentialformofthegeneralconservationequationThesurfaceintegralisconvertedtoavolumeintegralbytheapplicationofthedivergencetheorem.DifferentialOperationsinRectangularCoordinatesGradientforadifferentiablescalarfunctionDivergenceforadifferentiablevectorfunctionLaplacianforadifferentiablescalarfunctionDifferentialOperationsinCylindricalCoordinatesGradientforadifferentiablescalarfunctionDivergenceforadifferentiablevectorfunctionLaplacianforadifferentiablescalarfunctionDifferentialOperationsinSphericalCoordinatesGradientforadifferentiablescalarfunctionDivergenceforadifferentiablevectorfunctionLaplacianforadifferentiablescalarfunctionPointConservationEquationsforInterfacesTheboundaryconditions

ControlvolumeenclosingpartofaninterfacebetweenphaseAandphaseB.TheSurfaceSAandSBareeachaconstantdistancelfromtheinterface.ConvectiveandDiffusiveFluxesThegeneralconservationequationataninteriorpointisrewrittenas:ThebalanceataninterfaceisSummaryforGeneralConservationEquationsGeneralconservationequationsforinteriorpointsandinterfacesinteriorpointspointsatinterfacesWiththemassaveragevelocityFluxContinuityandSymmetryConditionswithinaGivenPhaseF

isacontinuousfunctionofpositionatallinteriorpoint.

symmetryplaneaxisymmetricorsphericallysymmetricTotalmassconservationatinteriorpointsContinuityEquation:applicationofthegeneralconservationequationstototalmassContinuityEquationtionRectangular:Cylindrical:Spherical:

TotalmassconservationatinterfaceAlternativeConservationEquationsMaterialderivative(orsubstantialderivative):

iftheamountofanyquantityperunitmassisdenotedas

ConservationofHeatForsolidsorpurefluidsConservationofHeatRectangular:Cylindrical:Spherical:

HeatTransferatInterfaces1.InterfacialEnergyBalancefortheusualsituation

HeatTransferatInterfaces2.ThermalEquilibriumataninterfaceUsuallyassumption:Certainsituations:3.SymmetryConditionssymmetryplaneaxisymmetricorsphericallysymmetricConservationofChemicalSpeciesConstantandWithFick’sLawforConservationofChemicalSpeciesRectangular:Cylindrical:Spherical:

MassTransferatInterfacesInterfacialSpeciesBalanceSpeciesEquilibriumatInterfaceSymmetryConditionssymmetryplaneaxisymmetricorsphericallysymmetricAnalysisonMassTransfer(I)

SteadyandTransientProblemsTransportofChemicalSpeciesFluxesofChemicalSpeciesReferencevelocityMolarunitsMassunits0Ni

niv

Ji

jivM

JiM

jiMFluxrelationshipsDiffusionofChemicalSpeciesFick’slawforbinarymixturesofAandBOne-DimensionalSteadyProblemsExample1:DirectionalSolidificationofaDiluteBinaryAlloyExample2:Diffusioninabinarygaswithaheterogeneousreaction

Example3:DiffusioninadiluteliquidsolutionwithareversiblehomogeneousreactionExample4:TransientdiffusioninasolidfromasurfacefixedconcentrationDopingofsemiconductorsI.C.C=0,y≥0,t=0B.C.C=Cs,y=0C=0,y→∞

TransientProblemsSimilaritymethod(combinationofvariables)TheErrorFunctionDopingofsemiconductorsA2mmthicksiliconwaferistobedopedwithantimony(Sb)inordertocreateap-typeregion.ThiscanbedonebypassingaSbCl3/H2gasmixtureoverthesurfaceofthewaferat1200oC,whichfixesthesurfaceSbconcentrationat1023atoms/m3.Supposethatthedonordensity(whichisjustanothertermfortheSbconcentration)ishopedtobegreaterthanorequalto3×1022/m3,overadepthof1μmbelowthesurface.Determinehowlongthewafershouldbeexposedtothisatmosphereinordertoachievethis.Example5:TransientdiffusioninaSymmetricSlab>0AnalysisonMassTransfer(II)

TransportofChemicalSpeciesCharacteristictimefordiffusion

CharacteristictimeforheatconductionInfiniteorsemi-infinitedimensionapproximationPseudo-steadyApproximationPseudo-steadyProblemsExample6:Pseudo-steady

DiffusioninaMembranePseudo-steadyapproximationExample7:Pseudo-steadyEvaporationofaColumnofLiquidAnalyticalExpressionsofMassTransferCoefficientsfromModelsConcentrationprofileinliquidFilmModelforInterfacialMassTransfer

ConcentrationprofileattimetinasurfaceelementUnsteadyModelsforInterfacialMassTransferSurfaceagedistributionfunctionforpenetrationmodelPenetrationModelforInterfacialMassTransferDistributionfunctionofageofsurfaceelementsforrandomsurfacerenewalmodelSurfaceRenewalModelforInterfacialMassTransferMasstransferinalaminarflowInthiscase,apuresolventflowinglaminarlyinacylindricaltubesuddenlyentersasectionwherethetube’swallsaredissolving.Theproblemistocalculateshowthemasstransfercoefficientvarieswiththefluid’sflowandthesolute’sdiffusion.Inotherwords,itfindsthemasstransferasafunctionofquantitieslikeReynoldsandSchmidtnumbers.Forforcedflowsinshorttubes(smallξ),solutetransferoccursmainlynearthewall.ThethinnessoftheregionofinterestmakesthecurvatureterminLapalciannegligible.Thefluidfarawaythetube’swall(nearthetube’saxis)ispuresolvent.Levequeapproximation:theneglectofsurfacecurvatureandlinearizationofthevelocityprofilegammafunctionFromexperiments,theSherwoodnumberintheearlypartoftheentranceregion:MassTransferCoupledwithChemicalReactionTransportofChemicalSpeciesHeterogeneousReactionHomogeneousReactionEffectofTransportPhenomenaonReactionOctaveLevenspiel,Ind.Eng.Chem.Res.1999,38,4140-4143EffectsofReactiononMassTransferTwodistincteffectsofchemicalreactionsonmasstransfer:TomaintainahighconcentrationdifferenceToenhancetherateatgivenlevelofconcentrationdifference

ThemasstransferrateenhancementbyhomogeneousreactionTherateenhancementfactorI:KeypointsaboutrateenhancementfactorIRatiooftheratesatthesameconcentrationdifference

orkA0

,dependedontherealfluidmechanics;theanalyticalexpressionisunavailablefromfirstprinciplesorkA,morecomplex,nohopetogettheanalyticalexpressionfromfirstprinciplesTheratioIturnsouttobealmostindependentofthefluidmechanicsinvolved;canbedevelopedonthebasisofverycrudemodelsofthefluidmechanicsinvolvedI

is,ingeneral,acomplicatedfunctionofthecompositionofthephasesinvolved;simplifiedequationsemergefromtheconsiderationofthelimitingconditionsReactiontimetrMasstransfertimetmDimensionlessratioΦ

Φ=tm/tr

Ameasureoftherelativerateofreactiontomasstransfer

I=f(Φ)acomplexfunctionSlowreactionregime:Φ<<1I=1Fastreactionregime:Φ>>1Instantaneousreactionregime(uplimit):PhysicalinterpretationonrateenhancementeffectCase:onlyonereactionmaytakesplaceinonephasewiththechemicalkinetic:

Usingfilmtheoryforthedilutesolution,onedimensionalandsteadycase

SteeperconcentrationgradientattheinterfaceEnhancementfactorlargerthanunityTheconditionwheretheenhancementeffectisnegligible:Averagecurvature<<Averagegradient/filmthickness

SlowReactionΦ<0.2Thespeciesconcentrationrelationships

FastReactionAmajorsimplification:Φ>>1InstantaneousReactionWithfilmmodelandFick’slaw102~103PhysicalinterpretationofmasstransferwithinstantaneousirreversiblereactionTheSlow-FastTransitionThetransitionregionaroundΦ=1Withfilmtheory

ForafirstorderirreversiblereactionfilmtheorysurfacerenewaltheoryTheFast-InstantaneousTransition

ReferencesandFurtherReadingsAstarita,G.,Savage,D.W.andBisio,A.GasTreatingwithChemicalSolvents,NewYork,Wiley,1983Cussler,E.L.Diffusion,3rded.,CambridgeUniversityPress,NewYork,2007MulticomponentmasstransferdrivenbyseveraldrivingforcesReviewonFick’sLawMolarfluxwithrespecttomolaraveragevelocityMolarfluxwithrespecttomassaveragevelocityFailuresofFick’sLawCaseI:MulticomponentsystemsFick’slawisinvalid.ConventionalApproachesformoleculartransport(Fick’sLaw):Transferfluxofeachcomponentisproportionalitsownconcentrationgradient.Validonlyforcertainspecialcases:IdealbinarysystemVerydilutesystem

Forn-componentsystemsMolarfluxwithrespecttomassaveragevelocityMatrixRepresentationTHEGENERALIZEDFICK’SLAWMolarfluxwithrespecttomolaraveragevelocityMolarfluxwithrespecttovolumeaveragevelocityMassfluxwithrespecttomassaveragevelocityAlternativeFormsoftheGeneralizedFick’sLawTransformationsbetweenFick’sDiffusivitiesOntheDijM,Dij,DijVorDijωetc...ConclusionontheFick’sLawformultcomponentsystems:OtherExamplesofFailureofFick’sLaw

Fick’slawisonlyvalidforconcentrationdrivingforceDrivingForcesforDiffusionCompositiondrivingforce(chemicalpotentialgradientatconstantTandP)ElectricalpotentialgradientPressuregradientTemperaturegradientOtherexternalfieldgradientsFick’slawisnotvalidforconfinedspaces(suchasmicro-/nano-poroussystems).OnFick’sLawKeypoints:.5.Maxwell-StefanTheoryThespeciesvelocityisdeterminedbyseveralfactors:ThemovementofthemixtureaswholeThedrivingforcesofthespeciesforrelativemovementFrictionofthespecieswithitssurroundingsInthemotionofamolecularspecies,itstotaldrivingforceandtotalfrictionarebalancedeachotherDrivingForcesPotentialGradient

Potentialgradient:Itcanbeignored!TotalDrivingForceCompositiondrivingforcePressuredrivingforceElectricaldrivingforceTemperaturedrivingforceothersAboutdrivingforcesAspeciesisdrivenbyitsownpotentialgradientThegravitypotentialgradientisratherunimportantThegradientofthechemicalpotentialismuchmoreimportantExternalfieldgradientsareotherimportantdrivingforcesFrictionResistanceFrictionofjoniinonemoleofthemixture(xi,i=1,2,…,n):Totalfrictiononi:(Maxwell-Stefandiffusivity)Constitutiveequation(Maxwell-Stefan)Balance:Drivingforce+Friction=0(totaldrivingforceoni)=-(totalfrictiononi)GeneralizedMaxwell-StefanEquation

MatrixFormulationoftheMaxwell-StefanEquations

Forbinarysystems:Fordilutesystems:ForonetracecomponentsystemsForsystemswithidenticaldiffusivitiesBOOTSTRAPPROBLEMTheGeneralizedBootstrapEquationFluxeswithrespecttoafixedpointTheGeneralizedBootstrapEquationEquimolarCounterdiffusionStefanDiffusionFluxRatiosSpecifiedExamplesofthebootstrapproblemSummaryonM-SEquationsTheconstitutiveequationofaspeciescontainsdrivingforcesonthespeciesandfrictiontermswithallotherspecies.ThefrictiontermscontainsanewtypediffusivityThenumberofindependentconstitutiveequationsisonelessthanthenumberofcomponents.Toobtainvelocitiesorfluxeswithrespecttoaphaseinterfaceorafixedcoordinatesystem,thebulkvelocityofthemixtureoranextra‘bootstrap’relationisneeded.GeneralizedMaxwell-StefanEquation

MulticomponentmasstransferdrivenbyseveraldrivingforceswithapplicableCaseI:MoleFractionGradientwithoutFluxThesystemisatsteady.Thegasisideal,isothermalandisobaric.Bootstrapequations:Maxwell-Stefanequations:MolarfractionandfluxofspeciesC:MolarfractionandfluxofspeciesA:InthecaseofDiscreteMaxwell-StefanEquation

FortheonedimensionprobleminathinfilmSteady,nohomogeneousreactionandonedimensionproblemsinarectangularcoordinatesystemCaseII:GasdiffusionwithHeterogeneousReactionToestimatetheoverallrateofthereactionofethanolBootstrapequations:Maxwell-Stefanequations:ThesolutionofthedifferentialequationsyieldsDiscreteMaxwell-Stefanequations:ThesolutionofthediscreteequationsyieldsM-SapproachforelectrolytesKeypoints:Species:ionsandsolventmoleculesElectroneutralityrelationBootstrapequationElectricdrivingforce(important)Fordilutesolutionofstagnantwater

FordilutesolutionofstagnantwaterFortheonedimensionprobleminsideathinfilm:steadyandnohomogeneousreactioninarectangularcoordinatesystematroomtemperatureCaseIII:ElectroneutralityZeroelectriccurrentM-SequationsCaseIV:PolarizationinelectrolysisM-Sequations:bootstraps:Limitingcurrentwhen:atroomtemperature专题报告Maxwell-Stefan方法在传质过程模型化中的应用近期国际刊物文献(不能是review)

.选择自己感兴趣的主题,限于Maxwell-Stefan方法。精读:详细推导其中的关系式,从其所引用的原始文献中找出所省略掉的内容。12月9日交原文和报告(电子版给助教)

用离散型Maxwell-Stefan方程预测盐酸溶液中加入痕量氯化钠时钠离子的扩散方向(参见讲义中的图7.5和图7.7;膜厚度用10微米)。Problem4onpage181Maxwell-StefanDiffusivityRelationshipBetweenFickandMaxwell-StefanDiffusionCoefficientsOnlywithcompositiondrivingforceForbinary(1-2)systems:M-SdiffusivitiesingasesUsingbinarygasdiffusivitiesinmulticomponentcalculationsM-SdiffusivitiesinliquidsForbinarysystems:Thermodynamicfactorforthesystemethanol-waterat40°Cobtainedfromdifferentactivitycoefficientmodels.ParametersfromGmehlingandOnken(1977ffVol.I/lap.133).Fordilutebinaryliquidmixtures:Wilke-ChangEquation=diffusioncoefficientofspeciesi(thesolute)ininfinitelylowconcentrationinspeciesj(thesolvent)[cm2/s]Mj

=molarmassofthesolvent[g/mol]T=temperature[K]=viscosityofthesolvent[mPas=cP]Vi=molarvolumeofsolute1atitsnormalboilingpoint[cm3/mol]associationfactorforthesolventCaldwellandBabb(1956)recommendedbyDannerandDaubert(1983)Vignes(1966)recommendedbyReid(1987)LefflerandCullinan(1970)ConcentratedbinaryliquidmixturesMaxwell-StefanDiffusionCoefficientforMulticomponentLiquidMixturesMaxwell-Stefandiffusioncoefficientsfortheternarysystem2-propanol(l)-water(2)-glycerol(3)andthebinaries2-propanol-glycerolandwater-glycerolGeneralizedVignesEquationThreediffusivitiesinthemixturetoluene(1)-chlorobenzene(2)-bromobenzene(3)at30°C.Thetrianglesarethebest-fitlogarithmicinterpolationsKooijmanandTaylor(1991)Maxwell-StefandiffusioncoefficientpredictedbygeneralizedVignesEquationforanonidealliquidmixtureWesselinghandKrishna(1990)NaClaqueoussolutionsat25oC,atvarioussaltconcentrations.Numberingis1=Na+;2=Cl-;3=H2OLaity,R.W.,DiffusionofIonsinanElectricField,J.Phys.Chem.,67,671-676(1963)M-SdiffusivitiesinElectrolytesolutionsDiffusivitiesinsodiumchloridesolutionsIon-WaterdiffusivitiesinaqueoussolutionsCation-aniondiffusivitiesItisnotveryaccuratewithdeviationsupto30%.Evenso,itcanbeusefulbecauseion-ionfrictionisoftenasmallpartofthetotalfrictionduetolowionicconcentrations,soweneednotevaluateitaccuratelyDiffusivitiesofionsoflikechargeOneofthefewcasesinwhichMaxwell-Stefandiffusivitiesarenegative.Thefrictionofanionwithitssurroundingstendstobereducedbyaddingionsoflikecharge.Theneteffectmaynotbeareduction,becauseionsofunlikechargemustalsobeaddedtoretainelectroneutrality.Maxwell-StefanapproachvsFickequationsForaternarymixturewithonlyconcentrationgradientsM-S:Fick:CaseI:anidealternarygasmixtureFickdiffusioncoefficientsplottedasafunctionofcompositionforthethreepossiblechoicesof"component3."ThethreeMaxwell-StefandiffusioncoefficientsinthesystemH2-N2-CC12F2.NotethattheMaxwell-Stefancoefficientsareindependentofcomposition.TheMaxwell-StefandiffusioncoefficientspredictedusingageneralizedVignesequationforanonidealliquidmixtureCaseII:anonidealternaryliquidmixtureTheFickdiffusioncoefficientsasafunctionofcompositionandcomponentnumberingforanonidealliquidmixtureMSFickSimplebehaviorofcoefficients+-Independenceofreferenceframe+-Easilyextendedtootherdrivingforces+-Numberofcoefficientsn(n-1)/2(n-1)2Coeff’sindependentofdrivingforces+-Coefficientsindependentofsequence+-Integrationwiththermodynamics+-Lookslike'chemicalengineering'-+AdvantagesanddisadvantagesofthetwodescriptionsEffectiveDiffusivityMethodsforMulticomponentDiffusionDefinitions:Acceptabletheoretically?RelationshipBetweenEffectiveandMaxwell-StefanDiffusionCoefficients:ForthecasesofRelationshipBetweenEffectiveandFickDiffusionCoefficients:AllbinarydiffusioncoefficientsequalIndilutemixtureswhereonecomponentisinalargeexcessWhenspeciesidiffusesthroughn-1stagnantgasesLimitingCases:WilkeEquationOtherEquationsforEffectiveDiffusivity12MassTransferinPoresDoyouremember?Threemainresistanceswithintwophases

SchematicdiagramofadsorbentorcatalystparticledepictingthethreemaindiffusionresistancesMacropore>50nmMesopore2~50nmMicropore<2nm

Poresizedistributionofzeolite-X,molecularsievecarbonandactivatedcarbonThemechanismsofmasstransferinaporeThreeContributionstoMassFluxFluxofthespecieswithinaporousmedium

Contributionsofbulk,KnudsonandsurfacediffusionfortransferofH2Sacrossacatalyticmembrane(350nmpores)carryingtheClausreaction:2H2S+SO2=3/8S8+2H2O

H2SfluxacrosmembranceThedustygasmodelThemostconvenientapproachtomodelingcombinedbulkandKnudsendiffusionAssumptions:ThedustconcentrationC'n+1isspatiallyuniformThedustismotionless,sothatN'n+1=0ThemolarmassofthedustparticlesEffectiveMaxwell-StefanDiffusivitiesGeneralizationtonon-idealfluidmixtureEffectiveKnudsenDiffusivitiesMatrixFormForidealgasesForidealmixtureswithoutexternalforcesForidealgaseousmixturesViscousflowMembraneProcessesPressuregradientinporousmediumgaseousmixtures

三元气体混合物He(1)-Ne(2)-Ar(3)扩散通过一个惰性多孔膜。膜内的孔可以看作是平行圆柱孔,膜的空隙率为70%。试确定在100nm、200nm和300nm三种孔径条件下,三个组分的稳态传质通量和方向。已知条件如下:上游压力P0=210×103Pa,下游压力Pδ=190×103Pa,温度T=300K,气体粘度μ=22×10-6Pa·s,膜厚度δ=9.6×10-3m,膜两侧的组成为:x10=0.4x1δ=0.4x20=0.4x2δ=0.3x30=0.2x3δ=0.3

组分在压力为100×103Pa和温度为300K的主体相气体中的二元Fick扩散系数为D12=1.068×10-4

㎡/sD13=0.724×10-4

㎡/sD23=0.316×10-4

㎡/s

ProblemSurfaceDiffusionThemechanismsofmasstransferinaporeThreeContributionstoTotalMassFluxFluxofthespecieswithinaporousmediumSinglefilediffusion(SFD)mechanism:Forthecaseinwhichthemoleculesaretoolargetopassoneanother,themechanismofcountersorptioncannotprevailbecausethereisaroomforonlyonetypeofmolecularspeciesatanygiventime.Completemechanism:Forthecaseinwhichthemoleculesaresmallenoughtopassoneanotherwithinalargeroom,thepossibilityofcountersorptioncannotberuledout.Maxwell-StefanequationforsurfacediffusionMaxwell-Stefanequationsforsinglefilediffusion(SFD)CompleteMaxwell-StefanequationsforsurfacediffusionMaxwell-StefansurfacediffusivityIfthejumpfrequencyremainsconstant,independentofsurfacecoverageIfthejumpfrequencydecreaseswithsurfacecoverageMicroporediffusionisanactivatedprocessMaxwell-Stefanmicroporediffusivityofn-butaneinsilicalite-1Countersorptioncoefficient:

theinteractionofadsorbatei–adsorbatejThesurfacechemicalpotentialgradientsForgaseousmixtureForliquidmixtureatnottoohighpressurefordilutesolutionThesurfacediffusionfluxesCompleteMaxwell-StefanequationSFDMaxwell-StefanequationTheMatrixform:ThedefinitionofamatrixofFicksurfacedif

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论