




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
3.1.空间向量的加减法及其数乘运算
临沂一中高二数学组复习回顾:平面向量1、定义:既有大小又有方向的量。几何表示法:用有向线段表示字母表示法:用小写字母表示,或者用表示向量的有向线段的起点和终点字母表示。相等向量:长度相等且方向相同的向量ABCD2、平面向量的加法、减法与数乘运算向量加法的三角形法则ab向量加法的平行四边形法则ba向量减法的三角形法则aba-ba+ba(k>0)ka(k<0)k向量的数乘a3、平面向量的加法、减法与数乘运算律加法交换律:加法结合律:数乘分配律:推广:(1)首尾相接的若干向量之和,等于由起始向量的起点指向末尾向量的终点的向量;(2)首尾相接的若干向量若构成一个封闭图形,则它们的和为零向量。F1F2F1=10NF2=15NF3F3=15N平面向量概念加法减法数乘运算运算律定义表示法相等向量减法:三角形法则加法:三角形法则或平行四边形法则空间向量及其加减与数乘运算空间向量具有大小和方向的量数乘:ka,k为正数,负数,零加法交换律加法结合律数乘分配律ABCDABCDABCDABCDA1B1C1D1CABDba平面向量概念加法减法数乘运算运算律定义表示法相等向量减法:三角形法则加法:三角形法则或平行四边形法则空间向量及其加减与数乘运算空间向量具有大小和方向的量数乘:ka,k为正数,负数,零加法交换律加法结合律数乘分配律ababab+OABbCa(k>0)ka(k<0)k空间向量的数乘空间向量的加减法abOABba结论:空间任意两个向量都是共面向量,所以它们可用同一平面内的两条有向线段表示。因此凡是涉及空间任意两个向量的问题,平面向量中有关结论仍适用于它们。平面向量概念加法减法数乘运算运算律定义表示法相等向量减法:三角形法则加法:三角形法则或平行四边形法则空间向量及其加减与数乘运算空间向量具有大小和方向的量数乘:ka,k为正数,负数,零加法交换律加法结合律数乘分配律加法交换律数乘分配律加法:三角形法则或平行四边形法则减法:三角形法则数乘:ka,k为正数,负数,零加法结合律成立吗?加法结合律:abcab+c+()OABCab+abcab+c+()OABCbc+推广:(1)首尾相接的若干向量之和,等于由起始向量的起点指向末尾向量的终点的向量;(2)首尾相接的若干向量若构成一个封闭图形,则它们的和为零向量。例1:已知平行六面体ABCD-A1B1C1D1,化简下列向量表达式,并标出化简结果的向量。(如图)ABCDA1B1C1D1ABCDABCDA1B1C1D1ABCDa平行六面体:平行四边形ABCD平移向量到A1B1C1D1的轨迹所形成的几何体.a记做ABCD-A1B1C1D1例1:已知平行六面体ABCD-A1B1C1D1,化简下列向量表达式,并标出化简结果的向量。(如图)ABCDA1B1C1D1GM
始点相同的三个不共面向量之和,等于以这三个向量为棱的平行六面体的以公共始点为始点的对角线所示向量F1F2F1=10NF2=15NF3=15NF3例2:已知平行六面体ABCD-A1B1C1D1,求满足下列各式的x的值。ABCDA1B1C1D1例2:已知平行六面体ABCD-A1B1C1D1,求满足下列各式的x的值。ABCDA1B1C1D1例2:已知平行六面体ABCD-A1B1C1D1,求满足下列各式的x的值。ABCDA1B1C1D1例2:已知平行六面体ABCD-A1B1C1D1,求满足下列各式的x的值。ABCDA1B1C1D1ABMCGD练习1在空间四边形ABCD中,点M、G分别是BC、CD边的中点,化简ABMCGD(2)原式练习1在空间四边形ABCD中,点M、G分别是BC、CD边的中点,化简ABCDDCBA练习2在立方体AC1中,点E是面AC’
的中心,求下列各式中的x,y.EABCDDCBA练习2E在立方体AC1中,点E是面AC’
的中心,求下列各式中的x,y.ABCDDCBA练习2E在立方体AC1中,点E是面AC’
的中心,求下列各式中的x,y.一、共线向量:零向量与任意向量共线.
1.共线向量:如果表示空间向量的有向线段所在直线互相平行或重合,则这些向量叫做共线向量(或平行向量),记作
2.共线向量定理:对空间任意两个向量的充要条件是存在实数使推论:如果为经过已知点A且平行已知非零向量的直线,那么对任一点O,点P在直线上的充要条件是存在实数t,满足等式OP=OA+t其中向量叫做直线的方向向量.OABPa
若P为A,B中点,则二.共面向量:1.共面向量:平行于同一平面的向量,叫做共面向量.OA注意:空间任意两个向量是共面的,但空间任意三个向量就不一定共面的了。2.共面向量定理:如果两个向量不共线,则向量与向量共面的充要条件是存在实数对使推论:空间一点P位于平面MAB内的充要条件是存在有序实数对x,y使
或对空间任一点O,有
例1对空间任意一点O和不共线的三点A、B、C,试问满足向量关系式(其中)的四点P、A、B、C是否共面?例2如图,已知平行四边形ABCD,从平面AC外一点O引向量,
,,,求证:⑴四点E、F、G、H共面;⑵平面EG//平面AC。
EFGHEFGH练习:1.下列说明正确的是:A.在平面内共线的向量在空间不一定共线B.在空间共线的向量在平面内不一定共线C.在平面内共线的向量在空间一定不共线D.在空间共线的向量在平面内一定共线2.下列说法正确的是:A.平面内的任意两个向量都共线B.空间的任意三个向量都不共面C.空间的任意两个向量都共面D.空间的任意三个向量都共面3.对于空间任意一点O,下列命题正确的是:A.若,则P、A、B共线B.若,则P是AB的中点C.若,则P、A、B不共线D.若,则P、A、B共线4.若对任意一点O且,则x+y=1是P、A、B三点共线的:A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年秋七年级英语上册 Module 5 My school day Unit 1 I love history说课稿 (新版)外研版
- 第五课 神奇的数据计算教学设计小学综合实践活动四年级下册人民版
- Unit 1 He shouted Wolf,wolf!说课稿-2025-2026学年小学英语四年级下册外研版(一起)
- 小学信息技术五年级上册第6课《顺序结构》教学设计
- 现代信息技术应用 10 利用软件Excel作统计的方法教学设计中职基础课-基础模块下册-高教版-(数学)-51
- 六年级信息技术下册 二十一多变的天气1说课稿 冀教版
- 2025福建莆田仙游央企抽水蓄能项目招聘2人笔试历年参考题库附带答案详解
- 2025福建广电网络集团招聘3人笔试历年参考题库附带答案详解(3卷合一)
- 体操类运动基本技术的运用教学设计初中体育与健康华东师大版八年级-华东师大版
- 2025广西防城港市港口区农旅发展集团有限公司公开招聘1人笔试历年参考题库附带答案详解(3卷合一)
- 2025银行招聘试题及答案详解
- 2025贵州册亨县招聘教师25人考试参考试题及答案解析
- 河南成人2024学位英语考试真题及答案
- 2025年淮南市大通区和寿县经开区公开招聘社区“两委”后备干部30名考试参考试题及答案解析
- 长期照护师培训考核试卷及答案
- 医保病历审核课件
- 煤矿安全规程2025版解读
- 中国民间传说:田螺姑娘
- 思想道德与法治教案绪论:担当复兴大任成就时代新人
- 新编临床医学英语(共37页)
- PAL 器件的基本结构和工作原理
评论
0/150
提交评论