初中数学的知识点_第1页
初中数学的知识点_第2页
初中数学的知识点_第3页
初中数学的知识点_第4页
初中数学的知识点_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

初中数学的知识点初中数学的知识点1方差是实际值与期望值之差平方的期望值,而标准差是方差算术平方根。在实际计算中,我们用以下公式计算方差。方差是各个数据与平均数之差的平方的平均数,即s=(1/n)[(x1-x_)+(x2-x_)+...+(xn-x_)],其中,x_表示样本的平均数,n表示样本的数量,xn表示个体,而s就表示方差。而当用(1/n)[(x1-x_)+(x2-x_)+...+(xn-x_)]作为样本X的方差的估计时,发现其数学期望并不是X的方差,而是X方差的(n-1)/n倍,[1/(n-1)][(x1-x_)+(x2-x_)+...+(xn-x_)]的数学期望才是X的方差,用它作为X的方差的估计具有“无偏性”,所以我们总是用[1/(n-1)]∑(xi-X~)来估计X的方差,并且把它叫做“样本方差”。方差,通俗点讲,就是和中心偏离的程度!用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)并把它叫做这组数据的方差。记作S。在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定。定义设X是一个随机变量,若E{[X-E(X)]}存在,则称E{[X-E(X)]}为X的方差,记为D(X),Var(X)或DX。即D(X)=E{[X-E(X)]}称为方差,而σ(X)=D(X).5(与X有相同的量纲)称为标准差(或均方差)。即用来衡量一组数据的离散程度的统计量。方差刻画了随机变量的取值对于其数学期望的离散程度。(标准差.方差越大,离散程度越大。否则,反之)若X的取值比较集中,则方差D(X)较小若X的取值比较分散,则方差D(X)较大。因此,D(X)是刻画X取值分散程度的一个量,它是衡量X取值分散程度的一个尺度。计算由定义知,方差是随机变量X的函数g(X)=∑[X-E(X)]pi数学期望。即:由方差的定义可以得到以下常用计算公式:D(X)=∑xipi-E(x)D(X)=∑(xipi+E(X)pi-2xipiE(X))=∑xipi+∑E(X)pi-2E(X)∑xipi=∑xipi+E(X)-2E(X)=∑xipi-E(x)方差其实就是标准差的平方。初中数学的知识点21、重心的定义:平面图形中,几何图形的重心是当支撑或悬挂时图形能在水平面处于平衡状态,此时的支撑点或者悬挂点叫做平衡点,也叫做重心。2、几种几何图形的重心:⑴线段的重心就是线段的中点;⑵平行四边形及特殊平行四边形的重心是它的两条对角线的交点;⑶三角形的三条中线交于一点,这一点就是三角形的重心;⑷任意多边形都有重心,以多边形的任意两个顶点作为悬挂点,把多边形悬挂时,过这两点铅垂线的交点就是这个多边形的重心。提示:⑴无论几何图形的形状如何,重心都有且只有一个;⑵从物理学角度看,几何图形在悬挂或支撑时,位于重心两边的力矩相同。3、常见图形重心的性质:⑴线段的重心把线段分为两等份;⑵平行四边形的重心把对角线分为两等份;⑶三角形的重心把中线分为1:2两部分(重心到顶点距离占2份,重心到对边中点距离占1份)。上面对重心知识点的巩固学习,同学们都能熟练的掌握了吧,希望同学们很好的复习学习数学知识。初中数学的知识点3一、平移变换:1。概念:在平面内,将一个图形沿着某个方向移动一定的距离,这样的图形运动叫做平移。2。性质:(1)平移前后图形全等;(2)对应点连线平行或在同一直线上且相等。3。平移的作图步骤和方法:(1)分清题目要求,确定平移的方向和平移的距离;(2)分析所作的图形,找出构成图形的关健点;(3)沿一定的方向,按一定的距离平移各个关健点;(4)连接所作的各个关键点,并标上相应的字母;(5)写出结论。二、旋转变换:1。概念:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动叫做旋转。说明:(1)图形的旋转是由旋转中心和旋转的角度所决定的;(2)旋转过程中旋转中心始终保持不动。(3)旋转过程中旋转的方向是相同的。(4)旋转过程静止时,图形上一个点的旋转角度是一样的。⑤旋转不改变图形的大小和形状。2。性质:(1)对应点到旋转中心的距离相等;(2)对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前、后的图形全等。3。旋转作图的步骤和方法:(1)确定旋转中心及旋转方向、旋转角;(2)找出图形的关键点;(3)将图形的关键点和旋转中心连接起来,然后按旋转方向分别将它们旋转一个旋转角度数,得到这些关键点的对应点;(4)按原图形顺次连接这些对应点,所得到的图形就是旋转后的图形。说明:在旋转作图时,一对对应点与旋转中心的夹角即为旋转角。常见考法(1)把平移旋转结合起来证明三角形全等;(2)利用平移变换与旋转变换的性质,设计一些题目。误区提醒(1)弄反了坐标平移的上加下减,左减右加的规律;(2)平移与旋转的性质没有掌握。初中数学的知识点4椭圆知识:平面内与两定点F1、F2的距离的和等于常数2a(2a>|F1F2|)的动点P的轨迹叫做椭圆。椭圆的第一定义即:│PF1│+│PF2│=2a其中两定点F1、F2叫做椭圆的焦点,两焦点的距离│F1F2│=2c长轴为2a;短轴为2b。椭圆的第二定义平面内到定点F的距离与到定直线的距离之比为常数e(即椭圆的离心率,e=c/a)的点的集合(定点F不在定直线上,该常数为小于1的正数)其中定点F为椭圆的焦点,定直线称为椭圆的准线(该定直线的方程是x=±a/c[焦点在X轴上];或者y=±a/c[焦点在Y轴上])。椭圆的其他定义根据椭圆的一条重要性质,也就是椭圆上的点与椭圆短轴两端点连线的斜率之积是定值定值为e-1可以得出:平面内与两定点的连线的斜率之积是常数k的动点的轨迹是椭圆,此时k应满足一定的条件,也就是排除斜率不存在的情况,还有K应满足简单几何性质1、范围2、对称性:关于X轴对称,Y轴对称,关于原点中心对称。3、顶点:(当中心为原点时)(a,0)(-a,0)(0,b)(0,-b)4、离心率:e=c/a5、离心率范围0知识归纳:离心率越大椭圆就越扁,越小则越接近于圆。初中数学知识点总结:平面直角坐标系平面直角坐标系平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合三个规定:①正方向的规定横轴取向右为正方向,纵轴取向上为正方向②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。初中数学知识点:平面直角坐标系的构成平面直角坐标系的构成在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做X轴或横轴,铅直的数轴叫做Y轴或纵轴,X轴或Y轴统称为坐标轴,它们的公共原点O称为直角坐标系的原点。初中数学知识点:点的坐标的性质点的坐标的性质建立了平面直角坐标系后,对于坐标系平面内的任何一点,我们可以确定它的坐标。反过来,对于任何一个坐标,我们可以在坐标平面内确定它所表示的一个点。对于平面内任意一点C,过点C分别向X轴、Y轴作垂线,垂足在X轴、Y轴上的对应点a,b分别叫做点C的横坐标、纵坐标,有序实数对(a,b)叫做点C的坐标。一个点在不同的象限或坐标轴上,点的坐标不一样。希望上面对点的坐标的性质知识讲解学习,同学们都能很好的掌握,相信同学们会在考试中取得优异成绩的。初中数学知识点:因式分解的一般步骤因式分解的一般步骤如果多项式有公因式就先提公因式,没有公因式的多项式就考虑运用公式法;若是四项或四项以上的多项式,通常采用分组分解法,最后运用十字相乘法分解因式。因此,可以概括为:“一提”、“二套”、“三分组”、“四十字”。注意:因式分解一定要分解到每一个因式都不能再分解为止,否则就是不完全的因式分解,若题目没有明确指出在哪个范围内因式分解,应该是指在有理数范围内因式分解,因此分解因式的结果,必须是几个整式的积的形式。初中数学知识点:因式分解因式分解因式分解定义:把一个多项式化成几个整式的积的形式的变形叫把这个多项式因式分解。因式分解要素:①结果必须是整式②结果必须是积的形式③结果是等式④因式分解与整式乘法的关系:m(a+b+c)公因式:一个多项式每项都含有的公共的因式,叫做这个多项式各项的公因式。公因式确定方法:①系数是整数时取各项最大公约数。②相同字母取最低次幂③系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。提取公因式步骤:①确定公因式。②确定商式③公因式与商式写成积的形式。分解因式注意;①不准丢字母②不准丢常数项注意查项数③双重括号化成单括号④结果按数单字母单项式多项式顺序排列⑤相同因式写成幂的形式⑥首项负号放括号外⑦括号内同类项合并。初中数学的知识点5一、圆的相关概念1、圆的定义在一个个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,固定的端点O叫做圆心,线段OA叫做半径。2、直线圆的与置位关系1.线直与圆有唯公一共时,点做直叫与圆线切2.三角的外形圆接的圆叫做三心形角外心3.弦切角于所等夹弧所对的的圆心角4.三角的内形圆切的圆叫做三心形角内心5.垂于直径半直线必为圆的的切线6.过径半外的点并且垂直端于半的径直线是圆切线7.垂于直径半直线是圆的的切线8.圆切线垂的直过切于点半径3、圆的几何表示以点O为圆心的圆记作“⊙O”,读作“圆O”二、垂径定理及其推论垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧。(3)平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。推论2:圆的两条平行弦所夹的弧相等。垂径定理及其推论可概括为:过圆心垂直于弦直径平分弦知二推三平分弦所对的优弧平分弦所对的劣弧三、弦、弧等与圆有关的定义1、弦连接圆上任意两点的线段叫做弦。(如图中的AB)2、直径经过圆心的弦叫做直径。(如途中的CD)直径等于半径的2倍。3、半圆圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆。4、弧、优弧、劣弧圆上任意两点间的部分叫做圆弧,简称弧。弧用符号“⌒”表示,以A,B为端点的弧记作“”,读作“圆弧AB”或“弧AB”。大于半圆的弧叫做优弧(多用三个字母表示);小于半圆的’弧叫做劣弧(多用两个字母表示)四、圆的对称性1、圆的轴对称性圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。2、圆的中心对称性圆是以圆心为对称中心的中心对称图形。五、弧、弦、弦心距、圆心角之间的关系定理1、圆心角顶点在圆心的角叫做圆心角。2、弦心距从圆心到弦的距离叫做弦心距。3、弧、弦、弦心距、圆心角之间的关系定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦想等,所对的弦的弦心距相等。推论:在同圆或等圆中,如果两个圆的圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。六、圆周角定理及其推论1、圆周角顶点在圆上,并且两边都和圆相交的角叫做圆周角。2、圆周角定理一条弧所对的圆周角等于它所对的圆心角的一半。推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。推论2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。推论3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。七、点和圆的位置关系设⊙O的半径是r,点P到圆心O的距离为d,则有:dd=r点P在⊙O上;d>r点P在⊙O外。八、过三点的圆1、过三点的圆不在同一直线上的三个点确定一个圆。2、三角形的外接圆经过三角形的三个顶点的圆叫做三角形的外接圆。3、三角形的外心三角形的外接圆的圆心是三角形三条边的垂直平分线的交点,它叫做这个三角形的外心。4、圆内接四边形性质(四点共圆的判定条件)圆内接四边形对角互补。九、反证法先假设命题中的结论不成立,然后由此经过推理,引出矛盾,判定所做的假设不正确,从而得到原命题成立,这种证明方法叫做反证法。十、直线与圆的位置关系直线和圆有三种位置关系,具体如下:(1)相交:直线和圆有两个公共点时,叫做直线和圆相交,这时直线叫做圆的割线,公共点叫做交点;(2)相切:直线和圆有唯一公共点时,叫做直线和圆相切,这时直线叫做圆的切线,(3)相离:直线和圆没有公共点时,叫做直线和圆相离。如果⊙O的半径为r,圆心O到直线l的距离为d,那么:直线l与⊙O相交d直线l与⊙O相切d=r;直线l与⊙O相离d>r;十一、切线的判定和性质1、切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线。2、切线的性质定理圆的切线垂直于经过切点的半径。十二、切线长定理1、切线长在经过圆外一点的圆的切线上,这点和切点之间的线段的长叫做这点到圆的切线长。2、切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。十三、圆和圆的位置关系1、圆和圆的位置关系如果两个圆没有公共点,那么就说这两个圆相离,相离分为外离和内含两种。如果两个圆只有一个公共点,那么就说这两个圆相切,相切分为外切和内切两种。如果两个圆有两个公共点,那么就说这两个圆相交。2、圆心距两圆圆心的距离叫做两圆的圆心距。3、圆和圆位置关系的性质与判定设两圆的半径分别为R和r,圆心距为d,那么两圆外离d>R+r两圆外切d=R+r两圆相交R-r两圆内切d=R-r(R>r)两圆内含dr)4、两圆相切、相交的重要性质如果两圆相切,那么切点一定在连心线上,它们是轴对称图形,对称轴是两圆的连心线;相交的两个圆的连心线垂直平分两圆的公共弦。十四、三角形的内切圆1、三角形的内切圆与三角形的各边都相切的圆叫做三角形的内切圆。2、三角形的内心三角形的内切圆的圆心是三角形的三条内角平分线的交点,它叫做三角形的内心。十五、与正多边形有关的概念1、正多边形的中心正多边形的外接圆的圆心叫做这个正多边形的中心。2、正多边形的半径正多边形的外接圆的半径叫做这个正多边形的半径。3、正多边形的边心距正多边形的中心到正多边形一边的距离叫做这个正多边形的边心距。4、中心角正多边形的每一边所对的外接圆的圆心角叫做这个正多边形的中心角。十六、正多边形和圆1、正多边形的定义各边相等,各角也相等的多边形叫做正多边形。2、正多边形和圆的关系只要把一个圆分成相等的一些弧,就可以做出这个圆的内接正多边形,这个圆就是这个正多边形的外接圆。十七、正多边形的对称性1、正多边形的轴对称性正多边形都是轴对称图形。一个正n边形共有n条对称轴,每条对称轴都通过正n边形的中心。2、正多边形的中心对称性边数为偶数的正多边形是中心对称图形,它的对称中心是正多边形的中心。3、正多边形的画法先用量角器或尺规等分圆,再做正多边形。十八、弧长和扇形面积1、弧长公式n°的圆心角所对的弧长l的计算公式为2、扇形面积公式其中n是扇形的圆心角度数,R是扇形的半径,l是扇形的弧长。3、圆锥的侧面积其中l是圆锥的母线长,r是圆锥的地面半径。初中数学圆解题技巧半径与弦长计算,弦心距来中间站。圆上若有一切线,切点圆心半径连。切线长度的计算,勾股定理最方便。要想证明是切线,半径垂线仔细辨。是直径,成半圆,想成直角径连弦。弧有中点圆心连,垂径定理要记全。圆周角边两条弦,直径和弦端点连。弦切角边切线弦,同弧对角等找完。要想作个外接圆,各边作出中垂线。还要作个内接圆,内角平分线梦圆。如果遇到相交圆,不要忘作公共弦。内外相切的两圆,经过切点公切线。若是添上连心线,切点肯定在上面。要作等角添个圆,证明题目少困难。辅助线,是虚线,画图注意勿改变。假如图形较分散,对称旋转去实验。初中数学的知识点6最简单的解释就是,不等式是指用不等号可以将两个解析式连接起来所成的式子。1.概念:在一个式子中的数的关系,不全是等号,含不等符号的式子,那它就是一个不等式.例如2x+2y≥2xy,sinx≤1,ex>0,2xx是超越不等式。2、分类:不等式分为严格不等式与非严格不等式。一般地,用纯粹的大于号、小于号“>“““≥”(大于等于符号)“≤”(小于等于符号)连接的不等式称为非严格不等式,或称广义不等式。通常不等式中的数是实数,字母也代表实数,不等式的一般形式为F(x,y,……,z)≤G(x,y,……,z)(其中不等号也可以为中某一个),两边的解析式的公共定义域称为不等式的定义域,不等式既可以表达一个命题,也可以表示一个问题。我们大家在判定不等式时要记得,在一个式子中的数的关系,不全是等号,含不等符号的式子,那它就是一个不等式。初中数学的知识点72+Dx+Ey+F=0,即成为一个关于x的方程如果b-4ac>0,则圆与直线有2交点,即圆与直线相交。如果b-4ac=0,则圆与直线有1交点,即圆与直线相切。如果b-4ac2.如果B=0即直线为Ax+C=0,即x=-C/A,它平行于y轴(或垂直于x轴),将x+y+Dx+Ey+F=0化为(x-a)+(y-b)=r。令y=b,求出此时的两个x值x1、x2,并且规定x1当x=-C/Ax2时,直线与圆相离;初中数学的知识点8初中数学数轴知识点①通常用一条直线上的点表示数,这条直线叫数轴。②数轴三要素:原点、正方向、单位长度。③数轴上的点和有理数的关系:所有的有理数都可以用数轴上的点表示出来,但数轴上的点,不都是表示有理数。④只有符号不同的两个数叫做互为相反数(和为零)。(例:2的相反数是-2,如:2+(-2)=0;0的相反数是0)⑤数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|。从几何意义上讲,数的绝对值是两点间的距离(无方向性,有两个点)。⑥数轴上两点间的距离=|M?N|⑥正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0。⑦两个负数,绝对值大的反而小。⑧|a|≥0(即非负性);绝对值等于一个正数的值有两个(两个互为相反数)如:|a|=5,a=5或a=-5初中的数学知识点(一)整式1.整式:整式为单项式和多项式的统称。2.整式加减整式的加减运算时,如果遇到括号先去掉括号,再合并同类项。(1)去括号:几个整式相加减,如果有括号就先去括号,然后再合并同类项。如果括号外的因数是正数,去括号后原括号内的符号与原来相同。如果括号外的因数是负数,去括号后原括号内的符号与原来相反。(2)合并同类项:合并同类项后,所得项的系数是合并前各项系数的和,且字母部分不变。3.单项式:由数或字母的积组成的代数式叫做单项式,单独的一个数或一个字母也叫做单项式。4.多项式:由若干个单项式相加组成的代数式叫做多项式。5.同底数幂是指底数相同的幂。6.同底数幂的乘法:同底数幂相乘,底数不变,指数相加7.幂的乘方法则:幂的乘方,底数不变,指数相乘。8.积的乘方:积的乘方,先把积中的每一个因数分别乘方,再把所得的幂相乘。9.单项式与单项式相乘单项式与单项式相乘,把它们的系数、同底数幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。10.单项式与多项式相乘单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。11.多项式与多项式相乘多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。12.同底数幂的除法:同底数幂相除,底数不变,指数相减。13.单项式除以单项式:单项式相除,把系数、同底数幂分别相除后,作为商的因式;对于只在被除式中含有的字母,则连同它的指数一起作为商的一个因式。14.多项式除以单项式:多项式除以单项式,先把多项式的每一项分别除以这个单项式,再把所得的商相加。(二)相交线与平行线(1)相交线在同一平面内,两条直线的位置关系有相交和平行两种。如果两条直线只有一个公共点时,称这两条直线相交。(2)垂线当两条直线相交所成的四个角中,有一个角是直角时,即两条直线互相垂直,其中一条直线叫做另一直线的垂线,交点叫垂足。(3)同位角两条直线a,b被第三条直线c所截(或说a,b相交c),在截线c的同旁,被截两直线a,b的同一侧的角,我们把这样的两个角称为同位角。(4)内错角两条直线被第三条直线所截,两个角分别在截线的两侧,且夹在两条被截直线之间,具有这样位置关系的一对角叫做内错角。(5)同旁内角两条直线被第三条直线所截,在截线同旁,且在被截线之内的两角,叫做同旁内角。(6)平行线几何中,在同一平面内,永不相交(也永不重合)的两条直线叫做平行线。平行线的性质:①两直线平行,同位角相等;②两直线平行,内错角相等;③两直线平行,同旁内角互补。(7)平移平移,是指在同一平面内,将一个图形上的所有点都按照某个直线方向做相同距离的移动,这样的图形运动叫做图形的平移运动,简称平移。(三)概率1.一般地,在大量重复试验中,如果事件A发生的频率n/m会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率。2.随机事件:在一定的条件下可能发生也可能不发生的事件,叫做随机事件。3.互斥事件:不可能同时发生的两个事件叫做互斥事件。4.对立事件:即必有一个发生的互斥事件叫做对立事件。5.必然事件:那些无需通过实验就能够预先确定它们在每一次实验中都一定会发生的事件称为必然事件。6.不可能事件:那些在每一次实验中都一定不会发生的事件称为不可能事件。初中数学知识点总结1.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程.2.一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0).3.一元一次方程解法的一般步骤:整理方程……去分母……去括号……移项……合并同类项……系数化为1……(检验方程的解).4.列一元一次方程解应用题:(1)读题分析法:…………多用于“和,差,倍,分问题”仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套-----”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.(2)画图分析法:…………多用于“行程问题”利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础.11.列方程解应用题的常用公式:(1)行程问题:距离=速度·时间;(2)工程问题:工作量=工效·工时;(3)比率问题:部分=全体·比率;(4)顺逆流问题:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度;(5)商品价格问题:售价=定价·折·,利润=售价-成本,;(6)周长、面积、体积问题:C圆=2πR,S圆=πR2,C长方形=2(a+b),S长方形=ab,C正方形=4a,S正方形=a2,S环形=π(R2-r2),V长方体=abc,V正方体=a3,V圆柱=πR2h,V圆锥=πR2h.初中数学的知识点9名画中运用到了黄金矩形的知识。接下来的内容是初中数学黄金矩形的基础知识点。黄金矩形黄金矩形(GoldenRectangle)的长宽之比为黄金分割率,换言之,矩形的长边为短边1.618倍。黄金分割率和黄金矩形能够给画面带来美感,令人愉悦。黄金矩形的分割方法1)作任意正方形ABCD.2)用线段MN将正方形平分为两半.3)用圆规,以N为中心,以|CN|为半径作弧.4)延长射线AB直至与以上的弧相交于E点.5)延长射线DC.6)作线段EF⊥AE,并令射线DC与EF交于F点.则ADFE为一黄金矩形.初中数学的知识点10圆的知识:平面上一条线段,绕它的一端旋转360°,留下的轨迹叫圆。圆心:(1)如定义(1)中,该定点为圆心(2)如定义(2)中,绕的那一端的`端点为圆心。(3)圆任意两条对称轴的交点为圆心。(4)垂直于圆内任意一条弦且两个端点在圆上的线段的二分点为圆心。注:圆心一般用字母O表示直径:通过圆心,并且两端都在圆上的线段叫做圆的直径。直径一般用字母d表示。半径:连接圆心和圆上任意一点的线段,叫做圆的半径。半径一般用字母r表示。圆的直径和半径都有无数条。圆是轴对称图形,每条直径所在的直线是圆的对称轴。在同圆或等圆中:直径是半径的2倍,半径是直径的二分之一.d=2r或r=d/2。圆的半径或直径决定圆的大小,圆心决定圆的位置。圆的周长:围成圆的曲线的长度叫做圆的周长,用字母C表示。圆的周长与直径的比值叫做圆周率。圆的周长除以直径的商是一个固定的数,把它叫做圆周率,它是一个无限不循环小数(无理数),用字母π表示。计算时,通常取它的近似值,π≈3.14。直径所对的圆周角是直角。90°的圆周角所对的弦是直径。圆的面积公式:圆所占平面的大小叫做圆的面积。πr,用字母S表示。一条弧所对的圆周角是圆心角的二分之一。在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距也相等。在同圆或等圆中,如果两条弧相等,那么他们所对的圆心角相等,所对的弦相等,所对的弦心距也相等。初中数学的知识点11数据的分析将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数(median);如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数。一组数据中出现次数最多的数据就是这组数据的众数(mode)。一组数据中的最大数据与最小数据的差叫做这组数据的极差(range)。方差越大,数据的波动越大;方差越小,数据的波动越小,就越稳定。数据的收集与整理的步骤:1.收集数据2.整理数据3.描述数据4.分析数据5.撰写调查报告初中数学的知识点12初中数学多项式的加法中考知识点多项式和单项式一起被称为整式,整式的运算离不开加法,多项式也是如此。多项式的加法有限个单项式之和称为多元多项式,简称多项式。不同类的单项式之和表示的多项式,其中系数不为零的单项式的最高次数,称为此多项式的次数。多项式的加法,是指多项式中同类项的系数相加,字母保持不变(即合并同类项)。多项式的乘法,是指把一个多项式中的每个单项式与另一个多项式中的每个单项式相乘之后合并同类项。F上x1,x2,…,xn的多项式全体所成的集合F[x1,x2,…,xn],对于多项式的加法和乘法成为一个环,是具有单位元素的整环。域上的多元多项式也有因式分解惟一性定理。关于多项式的加法计算的中考知识要领已经为大家整合出来了,请同学们相应做好笔记了。初中数学的知识点13不等式的证明1、比较法包括比差和比商两种方法。2、综合法证明不等式时,从命题的已知条件出发,利用公理、定理、法则等,逐步推导出要证明的命题的方法称为综合法,综合法又叫顺推证法或因导果法。3、分析法证明不等式时,从待证命题出发,分析使其成立的充分条件,利用已知的一些基本原理,逐步探索,最后将命题成立的条件归结为一个已经证明过的定理、简单事实或题设的条件,这种证明的方法称为分析法,它是执果索因的方法。4、放缩法证明不等式时,有时根据需要把需证明的不等式的值适当放大或缩小,使其化繁为简,化难为易,达到证明的目的,这种方法称为放缩法。5、数学归纳法用数学归纳法证明不等式,要注意两步一结论。在证明第二步时,一般多用到比较法、放缩法和分析法。6、反证法证明不等式时,首先假设要证明的命题的反面成立,把它作为条件和其他条件结合在一起,利用已知定义、定理、公理等基本原理逐步推证出一个与命题的条件或已证明的定理或公认的简单事实相矛盾的结论,以此说明原假设的结论不成立,从而肯定原命题的结论成立的方法称为反证法。上面的六大证明方法,绝对有一项是适合您的。初中数学知识点总结:平面直角坐标系下面是对平面直角坐标系的内容学习,希望同学们很好的掌握下面的内容。平面直角坐标系平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合三个规定:①正方向的规定横轴取向右为正方向,纵轴取向上为正方向②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。初中数学知识点:平面直角坐标系的构成对于平面直角坐标系的构成内容,下面我们一起来学习哦。平面直角坐标系的构成在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做X轴或横轴,铅直的数轴叫做Y轴或纵轴,X轴或Y轴统称为坐标轴,它们的公共原点O称为直角坐标系的原点。通过上面对平面直角坐标系的构成知识的讲解学习,希望同学们对上面的内容都能很好的掌握,同学们认真学习吧。初中数学知识点:点的坐标的性质下面是对数学中点的坐标的性质知识学习,同学们认真看看哦。点的坐标的性质建立了平面直角坐标系后,对于坐标系平面内的任何一点,我们可以确定它的坐标。反过来,对于任何一个坐标,我们可以在坐标平面内确定它所表示的一个点。对于平面内任意一点C,过点C分别向X轴、Y轴作垂线,垂足在X轴、Y轴上的对应点a,b分别叫做点C的横坐标、纵坐标,有序实数对(a,b)叫做点C的坐标。一个点在不同的象限或坐标轴上,点的坐标不一样。希望上面对点的坐标的性质知识讲解学习,同学们都能很好的掌握,相信同学们会在考试中取得优异成绩的。初中数学知识点:因式分解的一般步骤关于数学中因式分解的一般步骤内容学习,我们做下面的知识讲解。因式分解的一般步骤如果多项式有公因式就先提公因式,没有公因式的多项式就考虑运用公式法;若是四项或四项以上的多项式,通常采用分组分解法,最后运用十字相乘

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论