




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
两个原理与排列组合的基本问题1第一页,共四十八页,2022年,8月28日第七单元计算原理、概率与统计第二页,共四十八页,2022年,8月28日知识体系第三页,共四十八页,2022年,8月28日考纲解读1.理解分类加法计算原理和分步乘法计数原理,并会用分类加法计数原理或分步乘法计数原理分析和解决一些简单的实际问题.2.理解排列、组合的概念,能利用计数原理推导排列数公式、组合数公式,能解决简单的实际问题.3.能用计数原理证明二项式定理,会用二项式定理解决与二项展开式有关的简单问题.第四页,共四十八页,2022年,8月28日4.了解随机事件发生的不确定性和频率的稳定性,了解概率的意义,了解频率和概率的区别,了解两个互斥事件的概率加法公式.5.理解古典概型及其概率计算公式.会计算一些随机事件所含的基本事件数及事件发生的概率.6.了解随机数的意义,能运用模拟方法估计概率.了解几何概型的意义.第五页,共四十八页,2022年,8月28日7.概率.(1)理解取有限个值的离散型随机变量及其分布列的概念,了解分布列对于刻画随机现象的重要性.(2)理解超几何分布及其导出过程,并能进行简单的应用.(3)了解条件概率和两个事件相互独立的概念,理解n次独立重复试验的模型及二项分布,并能解决一些简单的实际问题.(4)理解取有限个值的离散型随机变量均值、方差的概念,能计算简单离散型随机变量的均值、方差,并能解决一些实际问题.第六页,共四十八页,2022年,8月28日(5)利用实际问题的直方图,了解正态分布曲线的特点及曲线所表示的意义.8.统计案例.了解下列一些常见的统计方法,并能应用这些方法解决一些实际问题.(1)独立性检验.了解独立性检验(只要求2×2列联表)的基本思想、方法及其简单应用.(2)回归分析.了解回归分析的基本思想、方法及其简单应用.第七页,共四十八页,2022年,8月28日第48讲两个原理与排列、组合的基本问题第八页,共四十八页,2022年,8月28日1.理解分类和分步的含义,掌握分类加法计数原理与分步乘法计数原理,并能应用他们分析和解决一些简单的应用问题.2.理解排列、组合的概念,能利用计数原理推理排列数、组合数公式,能解决简单的实际问题.第九页,共四十八页,2022年,8月28日1.某女孩有红、绿、黄、白4件上衣,红、绿、黄、白、黑5条裙子,3双不同的鞋子,5双不同的袜子,某一天要去出行,则不同的穿法种数为()BA.17B.300C.280D.150根据分步乘法计数原理知,不同的穿法种数为4×5×3×5=300(种).第十页,共四十八页,2022年,8月28日2.有不同的语文书7本,不同的英语书5本,不同的数学书4本,若从中选出不属于同一科目的两本书,则不同的选法种数为
种.83选语文、英语各一本有7×5=35种选法;选语文、数学各一本有7×4=28种选法;选英语、数学各一本有5×4=20种选法,所以共有35+28+20=83种不同的选法.第十一页,共四十八页,2022年,8月28日3.有A、B、C、D四个不同的元素,组成没有重复元素的排列的个数有()DA.4个B.24个C.48个D.64个按排列中所含元素的个数分为四类,由加法原理得:+++=64(个).第十二页,共四十八页,2022年,8月28日4.设集合M={a|1≤a≤10,a∈N},A是M的三元素子集,且至少有两个偶数元素,则这样的集合A的个数有()AA.60个B.100个C.120个D.160个因为集合M中有10个元素,5个奇数,5个偶数,故满足条件的有+=60(个)或--=60(个),或=60(个),故选A.第十三页,共四十八页,2022年,8月28日5.在三张卡片的正反两面上,分别写着数字1和2,4和5,7和8,当将它们并排组成三位数,不同的三位数的个数有()AA.48个B.36个C.42个D.32个从三张卡片上选数有:=8种,进行排列有种,由乘法原理,共有8=48(个).第十四页,共四十八页,2022年,8月28日1.分类加法计数原理完成一件事,有n类办法,在第1类办法中有m1种不同的方法,在第2类办法中有m2种不同的方法,……,在第n类办法中有mn种不同的方法,那么完成这件事共有N=①
种不同的方法.2.分步乘法计数原理完成一件事,需要分成n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法,……,做第n步有mn种不同的方法,那么完成这件事共有N=②
种不同的方法.m1+m2+m3+…+mnm1·m2·…·mn第十五页,共四十八页,2022年,8月28日3.分类和分步的区别分类:完成一件事同时存在n类方法,每一类都能独立完成这件事,各类互不相关.分步:完成一件事须按先后顺序分n步进行,每一步缺一不可,只有当所有步骤完成,这件事才完成.4.排列基础理论(1)排列的定义.从n个不同元素中,任取m(m≤n)个不同元素,按照一定的③
排成一列,叫做从n个不同元素中取出m个元素的一个排列.顺序第十六页,共四十八页,2022年,8月28日(2)排列数的定义.从n不同元素中,任取m(m≤n)个不同元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号④
表示.(3)排列数计算公式.=n(n-1)(n-2)…(n-m+1)=⑤
(其中m≤n).(ⅰ)若m=n,排列称为全排列,记=1·2·3·…·(n-1)·n=n!(称为n的阶乘);(ⅱ)规定0!=1.第十七页,共四十八页,2022年,8月28日5.组合基础理论(1)组合的定义.从n个不同元素中,取出m(m≤n)个不同元素组成一组,叫做从n个不同元素中取出m个元素的一个组合.(2)组合数的定义.从n个不同元素中,取出m(m≤n)个不同元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数,用符号表示.第十八页,共四十八页,2022年,8月28日(3)组合数计数公式.=⑥
=⑦
.=⑧
.规定=1.(4)组合数的两个性质.(ⅰ)=;(ⅱ)=+.第十九页,共四十八页,2022年,8月28日6.排列与组合的区别排列与组合的共同点是“从n个不同元素中,任取m个不同元素”;而不同点是排列要“按照一定的顺序排成一列”,而组合却是“只需组成一组(与顺序无关)”.因此,“有序”与“无序”是排列与组合的重要标志.⑨“
”为排列问题,⑩“
”为组合问题.有序无序第二十页,共四十八页,2022年,8月28日题型一利用两个计数原理求方法数例1
(1)现要排一份5天的值班表,每天有一人值班,共有5人,每人可以多天值班或不值班,但相邻两天不准由同一人值班,问此值班表共有
种不同排法.1280第二十一页,共四十八页,2022年,8月28日(1)值班表须依题设一天一天的分步完成.第一天有5人可选,有5种排法,第二天不能用第一天的人,有4种排法,同理,第三天、第四天、第五天也有4种,故由分步计数原理排值班表共有5×4×4×4×4=1280种,应填1280.第二十二页,共四十八页,2022年,8月28日
(2)设另两边长为x、y,且1≤x≤y≤11(x、y∈Z),构成三角形,则x+y≥12,当y取11时,x=1,2,3,…,11,有11个;当y取10时,x=2,3,…,10,有9个;当y取9时,x=3,4,…,9,共7个;……;当y取6时,x也只能为6,有1个,故满足题设的三角形共有:11+9+7+5+3+1=36个,故选C.(2)三角形的三边长均为整数,且最长的边长为11,则这样的三角形的个数有()A.25个B.26个C.36个D.37个C(1)是分步问题,用分步计数原理;(2)是分类问题,用分类计数原理.第二十三页,共四十八页,2022年,8月28日题型二排列、组合数方程问题例2解下列方程:(1)+1=140;(2)=++.第二十四页,共四十八页,2022年,8月28日(1)根据排列的意义及公式得4≤2x+13≤x(2x+1)2x(2x-1)(2x-2)=140x(x-1)(x-2),
x≥3(4x-23)(x-3)=0,解之并检验得x=3.则有第二十五页,共四十八页,2022年,8月28日(2)由组合数的性质可得++=++=+.又=,所以=+,即+=+,所以=,所以5=x+2,x=3,经检验知x=3.第二十六页,共四十八页,2022年,8月28日凡遇到解排列、组合的方程,不等式问题时,应首先应用性质和排列、组合的计算公式进行变形与化简,并注意有关解排列、组合的方程、不等式问题,最后结果都需要检验.第二十七页,共四十八页,2022年,8月28日题型三结合两个计数原理求排列、组合问题的方法数例3用0,1,2,3,4这五个数字,可以组成多少个满足下列条件的没有重复数字的五位数:
(1)比21034大的偶数;(2)左起第二位、第四位是奇数的偶数.第二十八页,共四十八页,2022年,8月28日(1)(方法一)可分五类:当末位数字是0,而首位数字是2,+=6(个);当末位数字是0,而首位数字是3或4,有=12(个);当末位数字是2,而首位数字是3或4,有=12(个);当末位数字是4,而首位数字是2,有+=3(个);当末位数字是4,而首位数字是3,有=6(个).故有6+12+12+3+6=39(个).第二十九页,共四十八页,2022年,8月28日(方法二)不大于21034的偶数可分为三类:1为万位数字的偶数,有=18(个);2为万位数字,而千位数字是0的偶数,有=2(个);还有21034本身.而由0,1,2,3,4组成的五位偶数共有+=60(个).故满足条件的五位偶数共有60---1=39(个).第三十页,共四十八页,2022年,8月28日(2)(方法一)可分两类:0是末位数,有=4(个);2或4是末位数,有=4(个).故共有4+4=8(个).(方法二)第二位、第四位从奇数1,3中取,有个;首位从2,4中取,有个;余下排在剩下的两位,有个,故共有=8(个).第三十一页,共四十八页,2022年,8月28日不同数字的无重复排列是排列问题中的一类典型问题,常见的附加条件有:奇偶数、位数关系及大小关系等,也可有相邻问题、不相邻问题等,解决这类问题的关键是搞清受限条件,然后按特殊元素(位置)的性质分类.这类问题有0参与时,不可忽视它不能排在首位的隐含条件.第三十二页,共四十八页,2022年,8月28日为了参加学校的元旦文艺会演,某班决定从爱好唱歌的4名男同学和5名女同学中选派4名参加小合唱节目,如果要求男女同学至少各选派1名,那么不同的选派方法有多少种?第三十三页,共四十八页,2022年,8月28日
(方法一)按选派的男同学的人数分三类:①选派一名男同学,三名女同学有·=40种方法;②选派两名男同学,两名女同学有·=60种方法;③选派三名男同学,一名女同学有·=20种方法;由分类计数原理,共有不同的选派方法有40+60+20=120种.第三十四页,共四十八页,2022年,8月28日(方法二)在这九名同学中任选四名,有=126种方法.其中四人都是男同学的有=1种方法;四人都是女同学的有=5种方法,因此符合要求的选派方法有126-1-5=120种.第三十五页,共四十八页,2022年,8月28日有限制条件的组合应用题的限制条件主要表现在被选出的元素“含”或“不含”某些元素,或是“至少”“至多”等类型的组合问题,对于这类组合应用题解题的总体思路为:(1)用直接法.一般是从整体分类,然后再局部分步.对于较复杂的从若干个集合里选元素的问题,首先应以其中一个集合为基准进行分类(当然,为了使类别尽量少,这个集合里的元素较少为好),第三十六页,共四十八页,2022年,8月28日分类时要做到不重不漏,也就是各类的并集是全集,任意两类的交集是空集,在合理正确分类的前提下,在每一类中,依据题目的要求进行分步,分步要做到步步连续,各步之间相互独立.(2)用间接法.当正面求解较为困难时,也可采用正难则反的思想,用“间接法”求解,但要注意找准对立面.第三十七页,共四十八页,2022年,8月28日球台上有4个黄球,6个红球,击黄球入袋记2分,击红球入袋记1分.欲将此10个球中的4个球击入袋中,但总分不低于5分,则击球方法有几种?第三十八页,共四十八页,2022年,8月28日设击入黄球x个,红球y个符合要求,
x+y=42x+y≥5
x,y∈N*,
x=1x=2x=3x=4
y=3,y=2,y=1,y=0.故共有不同击球方法数为+++=195.则有解得第三十九页,共四十八页,2022年,8月28日本题需运用不等式的知识,确定击入黄球与红球的个数,有时则需利用集合的运算等知识,确定相关元素的个数,再利用排列或组合的知识解决方法种数问题.第四十页,共四十八页,2022年,8月28日1.解决应用题时,应分析:①要完成做一件什么事;②这件事怎样做才可以做好;③需要分类还是分步.运用分类计数原理和分步计数原理,关键在于①②两方面,认真分析题意,设计合理的求解程序是求解问题的关键.第四十一页,共四十八页,2022年,8月28日2.如果任何一类办法中的任何一种方法都能完成这件事,即类与类之间是相互独立的,即分类完成,则选用分类计数原理;如果完成一件事要经历几个步骤(即几步),且只有当这些步骤都做完,这件事才能完成,即步与步之间是相互依存、相互连续的,即分步完成,则选用分步计数原理.3.排列与组合的本质区别在于排列不仅取而且排,即与顺序有关,而组合只取出一组即可,与顺序无关.第四十二页,共四十八页,2022年,8月28日
4.注意排列数公式、组合数公式有连乘形式与阶乘形式两种,公式=n(n-1)·…·(n-m+1),=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年甘肃省陇南市康县人民法院招聘工作人员相关事项模拟试卷及1套参考答案详解
- 2025年度周口西华县中医院校园招聘17名模拟试卷及一套参考答案详解
- 2025福建龙岩市上杭县文化旅游发展有限公司(上杭古田建设发展有限公司)所属企业招聘人员拟聘用人选模拟试卷完整答案详解
- 2025湖北武汉市通城县事业单位高层次和急需紧缺人才引进48人模拟试卷及答案详解1套
- 2025甘肃省特种设备检验检测研究院招聘20人考前自测高频考点模拟试题附答案详解(突破训练)
- 2025安徽宣城市人民医院(皖南医学院附属宣城医院)高层次人才招聘6人模拟试卷及答案详解(网校专用)
- 2025年矿物质药品专利药项目建议书
- 公办性质幼儿园委托办学协议书5篇
- 2025湖北恩施州巴东县信陵镇人民政府公益性岗位人员招聘8人考前自测高频考点模拟试题附答案详解(模拟题)
- 2025年铸造造型材料项目合作计划书
- HG∕T 5087-2016 2,6-二叔丁基苯酚
- (正式版)QBT 5998-2024 宠物尿垫(裤)
- (完整)马克思主义政治经济学习题及参考答案
- 大规模模型蒸馏技术
- 12、口腔科诊疗指南及技术操作规范
- 我的家乡-枣阳
- GB/T 18851.4-2005无损检测渗透检测第4部分:设备
- GB/T 17553.1-1998识别卡无触点集成电路卡第1部分:物理特性
- 海南矿产资源概况
- 幻影桌面云管理平台实践指导手册
- 沪教牛津版英语4A M3U1 In our school:animal school优质课课件
评论
0/150
提交评论