电子商务的安全_第1页
电子商务的安全_第2页
电子商务的安全_第3页
电子商务的安全_第4页
电子商务的安全_第5页
已阅读5页,还剩55页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

EvolutionaryModelsandDynamicalPropertiesofComplexNetworksName:JianguoLiuUniversityofShanghaiforScienceandTechnology2010-3-241OutlineComplexnetworksanalysisbyCitespaceNetworkevolutionmodelsDynamicalpropertiesonscale-freenetworksPersonalizedrecommendation21999年-2010年发表的以“complexnetworks”为主题词的SCI论文数3Citespace软件介绍CiteSpace:由美国德雷赛尔大学信息科学与技术学院的陈超美开发。该程序可以登录到/~cchen/citespace后免费使用。利用Citespace寻找某一学科领域的研究进展和当前的研究前沿,及其对应的基础知识。

4复杂网络论文作者合作网(1999-2010)5复杂网络研究小组状况(1999-2010)6复杂网络各个国家研究状况(1999-2010)7利用引文分析观察当前的研究热点(1999-2010)8Topcitedauthors(1999-2010)9各研究领域之间的关系(1999-2010)10个性化化推荐荐的知知识图图谱11Topcitedauthors12目前的的研究究热点点13OutlineBackgroundintroductionNetworkevolutionmodelsDynamicalPersonalizedrecommendation142.Scale-freeNetworkEvolutionModelsMultistagerandomgrowingsmall-worldnetworkswithpower-lawdegreedistributionGrowingscale-freenetworkmodelwithtunableassortativecoefficientSelf-learningmutualselectionmodelforweightednetworksRandomevolvingnetworksunderthediameteranddverageconnectivityconstraint152.1.Multistagerandomgrowingsmall-Worldnetworkswithpower-lawdegreedistributionLiuJian-Guo,DangYan-ZhongandWangZhong-Tuo,ChinesePhysicsLetters23(3)746-749(2006)Onenodeisaddedineachtimestep;Selectthenodeuaccordingtothepreferentialmechanism;Selectaneighbornodeofnodeu;1617Onenodeisaddedineachtimestep;Selectthenodeuaccordingtothepreferentialmechanism;Selectaneighbornodeofnodeuaccordingtops;2.2.Growingscale-freenetworkmodelwithtunableassortativecoefficientQiangGuo,TaoZhou,Jian-GuoLiuetal.,PhysicaA371814-822(2006)18192.3Self-learningmutualselectionmodelforweightednetworksJian-GuoLiuetal.,DCDISBSupplement,ComplexNetworks,14(S7)33-36,(2007).123412345m=21234520212.4RandomEvolvingNetworksUndertheDiameterandAverageConnectivityConstraintThegrowthofrandomnetworksundertheconstraintthatthediameter,definedastheaverageshortestpathlengthbetweenallnodes,andtheaverageconnectivityremainsapproximatelyconstantisstudied.Weshowedthat,ifthenetworkmaintainstheformofitsdegreedistributionandthemaximaldegreeisaN-dependentcutofffunction,thenthedegreedistributionwouldbeapproximatelypower-lawwithanexponentbetween2and3.Jian-GuoLiuetal.,JournalofSystemScienceandSystemEngineering16(1)107-112(2007).22MotivationInthebiologicalnetworks,theconstantdiametermayberelatedtoimportantpropertiesofthesebiologicalnetworks,suchasthespreadandspeedofresponsestoperturbations.IntheInternetbackbonenetwork,theaveragedistanceisoneofthemostimportantfactorstomeasuretheefficiencyofcommunicationnetwork,anditplaysasignificantroleinmeasuringthetransmissiondelay.Theseconstraintscanbethoughtofastheenvironmentalpressures,whichwouldselecthighlyefficientstructuretoconveythepacketsinit.23Motivation24ConstructionofthemodelTheexpressionforthediameterdofarandomnetworkwitharbitrarydegreedistributionwasdevelopedWhereistheaveragedegree,25InordertoseekadegreedistributionthatmaintainsitsdistributionandhasanapproximatelyconstantdiameterindependentofN.TheparameterNcanbeaccomplishedbyimposingaN-dependentcutofffunction26Thedistributionp(k)canbedeterminedbywritingthisequationforandAlgebraicmanipulationyieldstherelation27Usinganintegralapproximation,amoreexplicitformulationcanbewrittenasfollowing.28Whenthenumericallycalculateddegreedistributionsforvariousvaluesof29DiscussionofparttwoWehavepresentedareasonfortheexistenceofpower-lawdegreedistributionunderthediameterconstraintobservedintheInternetbackbonenetworkwherethereareevolutionarypressurestomaintainitsdiameter.Ouranalysisshowsthat,ifthemaximaldegreeisaN-dependentcutofffunction,theformofarobustnetworkdegreedistributionshouldbepowerlawtomaintainitsdiameter,whiletheaverageconnectivitypernodeaffectthedistributionexponentslightly.30OutlineBackgroundintroductionNetworkevolutionmodelsDynamicalpropertiesoncomplexnetworksPersonalizedrecommendation313.1Structuraleffectsonsynchronizabilityofscale-freenetworks323.1HowtomeasurethesynchronizabilityWhereQistheratiooftheeigenvalues.ThesynchronizabilitywouldbeincreasedasQdecreases,viceverse.33Theedgeexchangemethodisintroducedtoadjustthenetworkstructure,andthetabusearchalgorithmisusedtominimizetheeigenvalueratioQminQiangGuo,LiuJian-Guo,etal,ChinesePhysicsLetters24(8)(2007)2437-2440.34Insummary,usingthetabuoptimalalgorithm,wehaveoptimizednetworksynchronizabilitybychangingtheconnectionpatternbetweendifferentpairsofnodeswhilekeepingthedegreedistribution.Startingfromscale-freenetworks,wehavestudiedthedependencebetweenthestructuralcharacteristicsandsynchronizability.Thenumericalresultssuggestthatascale-freenetworkwithshorterpathlength,lowerdegreeofclustering,anddisassortivepatterncanbeeasilysynchronized.353.1StructuraleffectsonsynchronizabilityminmaxCombiningthetabusearch(TS)algorithmandtheedgeexchangemethod,weenhanceandweakenthesynchronizabilityofscale-freenetworkswithdegreesequencefixedtofindthestructuraleffectsofthescale-freenetworkonsynchronizabilityLiuJian-Guo,etal,InternationalJournalofModernPhysicsC18(7)1087-1094(2008).36ThenumericalresultsindicatethatD,C,randBminfluencesynchronizabilitysimultaneously.Especially,thesynchronizabilityismostsensitivetoBm.37Effectoftheloopstructureonsynchronizability38OutlineBackgroundintroductionNetworkevolutionmodelsDynamicalpropertiesoncomplexnetworksPersonalizedrecommendation39PersonalizedrecommendationImprovedcollaborativefilteringalgorithmbasedoninformationtransaction.Ultraaccuracyrecommendationalgorithmbyconsideringthehigh-orderusersimilaritiesEffectofusertastesonpersonalizedrecommendation40WhyrecommendWefacetoomuchdataandsourcestobeabletofindoutthosemostrelevantforus.Indeed,wehavetomakechoicesfromthousandsofmovies,millionsofbooks,billionsofwebpages,andsoon.Evaluatingallthesealternativesbyourselvesisnotfeasibleatall.Asaconsequence,anurgentproblemishowtoautomaticallyfindouttherelevantobjectsforus.41CollaborativefilteringalgorithmHerlockeretal.,ACMTrans.Inf.Syst.22:5-53(2004)42Content-basedalgorithmTheuserwillberecommendeditemssimilartotheonesthisuserpreferredinthepastPazzani&Billsus,LNCS4321:325-341(2007)43ImprovedcollaborativefilteringalgorithmbasedoninformationtransactionIntraditionalCFalgorithm,Firstly,theusersimilarityiscomputedbasedonthePearsoncoefficientThengivethepredictedscoretotheuncollectedobjectsbasedontheusersimilaritiesByusingthediffusionprocesstocomputetheusersimilaritytoimproveCFalgorithm44Iliustrationofthediffusion-basedusersimilarityThetargetuserisactivatedandbeassignedaunitrecommendationpower,thenthemassisdiffusedfromthetargetusertotheobjectshehascollected,thentheit’’sdiffusedbackfromtheobjectstotheusers.Jian-GuoLiuetal,InternationalJournalofModernPhysicsC20285(2009).45TwoimprovedalgorithmsWearguethatthepotentialroleoftheobjectdegreesshouldbetakenintoaccounttoregulatetheusersimilarityOnlythetop-Nmostsimilarusers’opinionaretakenintoaccounttosavethememoryandincreasethecomputationspeed.46Numericalresultsoftheaveragerankingscore47Diversity48Averagerankingscoreofthetop-Nalgorithm49ConclusionanddiscussionsUsingthediffusionprocesstocomputetheusersimilaritycouldimproveCFalgorithmicaccuracyThecomputationalcomplexityofthepresentedalgorithmismuchlessthanthatofthestandardCF.Boththetwomodifiedalgorithmcanfurtherenhancetheaccuracy.WithproperlychoiceoftheparameterN,top-Nalgorithmcansimultaneouslyreducesthecomputationalcomplexityandimprovesthealgorithmicaccuracy.502,Ultraaccuracyrecommendationalgorithmbyconsideringthehigh-orderusersimilaritiesThemainideaFigure1showsanillustration,where1denotesthemainstreampreferencesharedbyallA,BandC,and2isthespecificpreferenceofAandC.Both1and2contributetothecorrelationbetweenAandC.Since1isthemainstreampreference,italsocontributestothecorrelationsbetweenAandB,aswellasBandC.TrackingthepathAtoBtoC,thepreference1alsocontributestothesecond-ordercorrelationbetweenAandC.Statisticallyspeaking,twouserssharingmanymainstreampreferencesshouldhavehighsecond-ordercorrelation,thereforewecandepresstheinfluenceofmainstreampreferencesbytakingintoaccountthesecond-ordercorrelation.Jian-GuoLiuetal,PhysicaA389881(2010).51ThepresentedalgorithmDenotetheusersimilaritymatrixiswhereHisthenewlydefinedcorrelationmatrix,S={}isthefirst-ordercorrelationdefinedasEq.(2),andisatunableparameter.Asdiscussedbefore,weexpectthealgorithmicaccuracycanbeimprovedatsomenegative.52Numericalresultsr5354EffectofusertastesonpersonalizedrecommendationWestudytheeffectsofusertastesonthemass-diffusion-basedpersonalizedrecommendationalgorithm,whereauser'stastesorinterestsaredefinedbytheaveragedegreeoftheobjectshehascollected.Wearguethattheinitialrecommendationpowerlocatedontheobjectsshouldbedeterminedbybothoftheirdegreeandtheusers'tastes.Byintroducingatunableparameter,theusertasteeffectsontheconfigurationofinitialrecommendationpowerdistributionareinvestigated.Jian-GuoLiuetal,InternationalJournalofModernPhysicsC20285(2009).55Numericalresults56AchievementsSelectedPublicationsAllpublicationshasbeencitedover118.H-indexis7Phys.Rev.E80,017101(2010);74,056109(2006).PhysicaA389,881(2010);371,861(2007);366,578(2006);371,814(2006);377,302(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论