混凝土梁桥的计算_第1页
混凝土梁桥的计算_第2页
混凝土梁桥的计算_第3页
混凝土梁桥的计算_第4页
混凝土梁桥的计算_第5页
已阅读5页,还剩120页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

3混凝土梁桥的计算§3.1概述§3.2公路桥面板(行车道板)的计算§3.3荷载横向分布计算§3.4主梁内力计算§3.5横隔梁内力计算§3.6挠度、预拱度的计算§3.7其它3混凝土梁桥的计算§3.1概述桥梁的设计过程:根据跨度、桥宽、荷载、施工拟定结构尺寸计算板、梁等作用效应作用效应组合结构设计原理验算满足要求?STOP修改结构尺寸YN返回§3.2公路桥面板(行车道板)的计算3.2.1桥面板的分类一、作用直接承受轮压传载于主梁与梁肋形成整体二、板的支承情况主梁+横隔梁(简单)加副梁(复杂)§3.2公路桥面板(行车道板)的计算3.2.1桥面板的分类二、板的支承情况四边支承板:双向板:

la/lb<2,双向均按内力配置受力钢筋(钢筋多,复杂,基本不用)

单向板:la/lb≥2,长跨方向只配分布钢筋悬臂板:la/lb≥2,有一自由边铰接悬臂板:

la/lb≥2,端部为铰接荷载的双向传递三、桥面板的类型类型构造特征实例双向板四边支承,长边和短边之比<2,即la/lb<2用钢量较大,构造较复杂,很少采用单向板四边支承,长边和短边之比≥2,即la/lb≥2⑴整体式肋梁桥的桥面板;⑵装配式肋梁桥翼缘板用湿接缝连接的板铰接悬臂板三边支承,另一边与相邻板铰接,且长边和短边之比≥2,即la/lb≥2装配式T梁桥翼缘板间做成铰接缝的板悬臂板三边支承,另一边自由,且长边和短边之比≥2,即la/lb≥2;或沿短边一边嵌固,另一边自由的板⑴装配式T梁桥翼缘板间为自由缝的板;⑵边梁外侧的翼缘板3.2.2车轮荷载在板上的分布将轮压作为分布荷载处理(板跨小,按集中力计算误差大)将车轮与桥面的接触面看作a1×b1的矩形截面(实为椭圆)车轮在板顶的分布沿桥梁纵向:沿桥梁横向:板上分布荷载P-后轴重(140KN)对混凝土或沥青面层,荷载偏安全地假定呈45°角扩散(偏安全)板顶轮载分布3.2.3桥面板的荷载分布宽度问题:板的有效计算宽度≠a1+2h(其余的板会帮助承载)板的计算宽度=?单向板按弹性板计算结果结论:沿y方向板均参与工作,但离轮载中心较远的板条受力小受力分析:

面积为(a1+2h)×(b1+2h)的局部分布荷载作用下,同时产生ωx、ωy,跨中弯距呈曲线分布,离荷载越远越小板的有效工作宽度两边固结的板的a小(比简支板);全跨满布条形荷载的a小(比局部布载);荷载靠近支承时a小。为便于计算,取板宽为a,在a内mx=mxmax(常量)(等效)所以a-板的有效工作宽度,称为板的荷载分布宽度有效工作宽度的规律a小,意味mx较集中《公桥规》对有效工作宽度的规定1.平行于板的跨径方向的荷载分布宽度2.垂直于板的跨径方向的荷载分布宽度①单个车轮在板的跨径中部时2.垂直于板的跨径方向的荷载分布宽度①单个车轮在板的跨径中部时②多个相同车轮在板的跨径中部时④车轮在板的支承附近,距支点的距离为x时③车轮在板的支承处时注:

按以上公式算的所有分布宽度,均不得大于板的全宽度;彼此不相连的预制板,车轮在板内分布宽度不得大于预制板宽度悬臂板按弹性板计算结果可见:悬臂板的a接近于2倍的悬臂长,故荷载可近似地按45度角向悬臂支承处分布。受力分析:

由弹性板理论,当板端作用集中力P时,受载板条的最大负弯距:总弯距为:有效工作宽度为:《公桥规》对有效工作宽度的规定

当c值不大于2.5m时,垂直于悬臂板跨径的车轮荷载分布宽度按下述公式计算1.平行于板的跨径方向的荷载分布宽度2.垂直于板的跨径方向的荷载分布宽度①单个车轮一般计算公式②对于分布荷载靠近板边的最不利情况③几个靠近车轮的作用分布宽度发生重叠时最不利情况——荷载靠近板边:当长悬臂板c值大于2.5m时,(《桥规未有明确计算方法》)悬臂根部负弯矩是以上计算的1.5~1.30倍,此外,在车轮荷载作用点下方的无限宽度板条中还有正弯矩出现,因此尚应考虑正弯矩配筋。最不利C≤2.5m3.2.4桥面板的内力计算实体矩形行车道板由弯矩控制设计,习惯取1米宽板条进行计算。多跨连续单向板构造上,行车道板与主梁梁肋整体连结,板与主梁共同作用。肋抗扭刚度大弹性固结梁固端梁连续梁近似肋抗扭刚度小肋抗扭刚度一般近似《公桥规》近似计算方法(精确计算难)1、计算弯距⑴宽度相同的简支板跨中弯距:包括恒载和汽车荷载产生的弯距为每米板宽的跨中恒载弯距,计算公式:为1米宽简支板条的跨中活载弯距,计算公式:注意:①l的取值;

②为和按极限状态设计法组合不考虑板和梁的弹性固结作用,简化为简支梁来计算板的计算跨径:计算弯距时《公桥规》近似计算方法(精确计算难)1、计算弯距⑵根据实验及理论分析的数据加以修正弯距修正系数可视板厚t和梁肋高度h的比值来选用a、当t/h<1/4时:跨中:支点:b、当t/h≥1/4时:跨中:支点:《桥规》近似计算方法(精确计算难)2、计算支点剪力-直接按简支板图式计算最不利位置:尽量靠近梁肋边缘,支点剪力的计算公式:恒载剪力:跨内作用一个车轮荷载的剪力:其中:矩形部分荷载合力:三角形部分荷载合力:注:如跨径内不止一个车轮进入,尚应计及其它车轮的影响板的计算跨径:计算剪力时例题1:一个前轴车轮作用下桥面板的内力计算条件:①桥主梁跨径为19.5m,桥墩中心距为20m,横隔梁间距4.85m,桥宽为5×1.6+2×0.75=9.5m,主梁为5片。铺装层由沥青面层(0.03m)和混凝土垫层(0.09m)组成。板厚120mm,主梁宽180mm,高1300mm。②桥面荷载:公路Ⅰ级要求:确定板内弯矩解答过程:

⑴判别板的类型单向板⑵确定计算跨度《公桥规》规定:与梁肋整体连接的板,计算弯距时其计算跨径可取为梁肋间的净距加板厚,但不大于两肋中心之间的距离。《公桥规》规定:计算剪力时的计算跨径取两肋间净距。计算弯距时:剪力计算时:⑶每延米板上荷载g沥青混凝土面层:25号混凝土垫层:25号混凝土桥面板:⑷简支条件下每米宽度上恒载产生的板弯距⑸轮压区域尺寸汽车前轮的着地长度a1=0.20m,宽度b1=0.30m此处h为铺装层,由沥青面层和混凝土垫层组成解答过程:

⑹桥面板荷载有效分布宽度a应取a=1.027m⑺车辆荷载在桥面板中产生的内力《公桥规》规定汽车荷载局部加载的冲击系数采用1.3,1+μ=2.3由于,故主梁抗扭能力较大,则有⑻最终内力桥面板跨中弯距:车轮在板跨中部时:桥面板支座弯距:按承载能力极限状态进行组合:1、计算弯距最不利荷载位置:车轮荷载对中布置于铰接处,铰内的剪力为零,两相邻悬臂板各承受半个车轮荷载。铰接悬臂板为铰接板每米板宽的最大恒载弯距,计算公式:为每米宽铰接板的根部活载弯距,计算公式:根部活载剪力:根部恒载剪力:2、计算剪力偏安全地按一般悬臂板图式来计算悬臂根部一米板宽最大弯距:为和按极限状态设计法组合悬臂板根部一米板宽最大剪力:为和按极限状态设计法组合例题2:铰接悬臂板的内力计算条件:如图所示T梁翼板所构成铰接悬臂板。荷载为公路Ⅱ级。冲击系数μ=1.3,桥面铺装为5cm的沥青混凝土面层(容重为21)和15cm防水混凝土垫层(容重为24)。T梁翼板的容重为25。要求:计算铰接悬臂板的内力计算解答过程:⑴恒载内力(以纵向1m宽的板进行计算)①每米板上的恒载集度沥青混凝土面层:防水混凝土垫层:T形梁翼板自重:汽车后轮的着地长度a1=0.20m,宽度b1=0.60m此处h为铺装层,由沥青面层和混凝土垫层组成②每米板上的恒载内力⑵公路Ⅱ级车辆荷载产生的内力板的有效工作宽度为:解答过程:

作用在每米宽板上的活载弯距:《公桥规》规定汽车荷载局部加载的冲击系数采用1.3,1+μ=2.3⑶内力组合-按承载能力极限状态组合1、计算弯距最不利荷载位置:车轮荷载靠近板的边缘布置。悬臂板为悬臂板每米板宽的最大恒载弯距,计算公式:为每米宽悬臂板的根部活载弯距,计算公式:悬臂根部一米板宽最大弯距:为和按极限状态设计法组合当时:当时:2、计算剪力已知:铰接悬臂板,公路-Ⅰ级桥面铺装:2cm沥青混凝土面层,γ1=23kN/m3;平均9cm厚

C20号混凝土垫层,γ2=24kN/m3;T梁翼板:γ3=25kN/m3。求算:设计内力作业:铰接悬臂板的内力计算返回§3.3荷载横向分布计算3.2.1实用空间计算原理主梁内力恒载:均布荷载(体积×密度)活载:实用空间计算原理-荷载横向分布活载作用下,梁式桥内力计算特点1、单梁(平面问题)

S=P·η1(x)影响线2、梁式板桥或由多片主梁组成的梁桥(空间问题)S=P·η(x,y)影响面实际中广泛使用方法:将空间问题转化成平面问题S=P·η(x,y)≈P·η2(y)·η1(x)η1(x)——单梁某一截面的内力影响线;η2(y)——某梁的荷载横向分布影响线。P·η2(y)——P作用于a(x,y)点时沿横向分布给某梁的荷载3.2.1实用空间计算原理S=P·η(x,y)≈P·η2(y)·η1(x)令m——主梁在横向分配到的最大荷载比例(通常比1小),称为荷载横向分配系数。在荷载横向分布影响线η2(y)上按横向最不利位置排列求得。近似用内力影响面η΄(x,y)=η1(x)·η2(y)

代替精确影响面η(x,y)P΄

=P·η2(y)可看作某主梁上横向分配到的荷载,实质为“内力”横向分布以车辆荷载为例设:轴重为P(x)(在x处作用的轴重)轮重为P΄(x,y)(在x处作用的轴重,其轮坐标为(x,y))则轮重为P΄(x,y)=1/2P(x)(汽车为双轮重)其中:按每个轮重为1/2,在荷载横向分布影响线上加载,求得m值。3.2.1实用空间计算原理横向分布系数(m)概念定义:表示某根主梁所承担的最大荷载是各个轴重的倍数(通常小于1)。说明:1)近似计算方法,但对直线梁桥,误差不大

2)不同梁,不同荷载类型,不同荷载纵向位置,不同横向连接刚度,m不同。

3)关键是如何计算荷载横向分布影响线和荷载横向分布系数,其实质是采用什么样的近似内力影响面代替实际的内力影响面,既能简化计算又保证计算精度。3.2.2荷载横向分布计算横向连结刚度对荷载横向分布的影响a、主梁间无联系,直接承载主梁m=1,整体性差,不经济。b、一般,横向刚度并非无穷大,变形规律复杂,

ωa>ωb>ωc,1>m>0.2c、刚度无穷大,横隔梁无弯曲变形,五根主梁挠度相等,每梁承受P/5,m=0.2EIh=0,受荷梁m=1,其余梁m=0EIh=∞,受荷梁m=1/n,n为梁片数0<EIh<∞,1/n<m<1,m需要计算确定结论:横向分布的规律与结构横向连结刚度关系密切,EIh

越大,荷载横向分布作用愈显著,各主梁的负担也愈趋均匀。因此:桥梁横向连结刚度EIh

↗,各梁m均匀度↗3.2.2荷载横向分布计算按不同的EIh

→m各种计算方法,目前常用的方法有:杠杆原理法、偏心压力法、横向铰接板(梁)法、横向刚接梁法、比拟正交异性板法计算模型(1)梁格系模型①杠杆原理法②偏心压力法③横向铰接板(梁)法④横向刚接梁法(2)平板模型比拟正交异性板法-简称G-M法各种方法共同点(1)横向分布计算得m;(2)按单梁求主梁活载内力值。一、杠杆原理法计算原理1、基本假定:忽略主梁间横向结构的联系作用,假设桥面板在主梁上断开,当作沿横向支承在主梁上的简支梁或悬臂梁来考虑2、计算方法:影响线加载法反力R用简支板静力平衡条件求出,即杠杆原理。(R=R1+R2)主梁最大荷载,可用反力影响线,即横向影响线据最不利荷载位置求横向分布系数moq,mog和mor注:应计算几根主梁,以得到受载最大的主梁的最大内力一、杠杆原理法适用场合1、双主梁桥(跨中和支点)2、计算荷载靠近主梁支点时的m

(不考虑支座弹性压缩-刚性支座)4、箱型梁桥的m=1箱型截面梁横向影响线3、近似用于横向联系很弱或无中间横隔梁的桥梁

(中梁偏大,边梁偏小)例题1:空心板桥的荷载横向分布系数计算条件:如图所示桥梁的横向宽度为净9m+2×1.5m(人行道)。由10块预制板拼装而成,板厚90cm,预制板宽105cm,每块预制板中有直径55cm的空洞。

要求:计算支座处汽车荷载的横向分布系数和人群荷载的横向分布系数求解步骤:

1、确定计算方法:荷载位于支点-杠杆原理法

2、绘制荷载横向影响线-反力影响线

3、根据《公桥规》,确定荷载沿横向最不利位置4、求相应的影响线竖标值η5、求最不利荷载:6、得到最不利荷载横向分布系数解答过程:按杠杆原理法计算,首先绘制横向影响线图,在横向上按最不利荷载布置:

⑴1号板:⑵2号板:⑶3号板:⑷4号板:⑸5号板:

继续返回作业:用杠杆原理法求支点处各梁的横向分布系数条件:如图所示一桥面净空为净-7+2×0.75m人行道的钢筋混凝土T梁桥,共5根主梁。

要求:求荷载位于支点处时各梁的荷载横向分布系数返回二、偏心压力法-刚性横梁法基本假定:①假定中间横隔梁无限刚性,受力变形后仍保持一直线;②忽略主梁抗扭刚度适用场合①具有可靠的横向联结,②且宽跨比B/l≤0.5(窄桥)偏心荷载P作用下,各梁挠曲变形,刚性的中间横隔梁呈一根倾斜的直线;1~5号主梁,位移直线分布。为求1号梁的荷载,假设:①、P=1作用于1号梁梁轴,跨中,偏心距为e;跨中计算原理②、各主梁惯性距Ii不相等;③、横隔梁刚度无穷大。则由刚体力学:偏心力P=1<====>中心荷载P=1+偏心力矩M=1·e二、偏心压力法-刚性横梁法1、中心荷载P=1的作用中间横隔梁刚性,横截面对称,故:据材料力学:——桥梁横截面内各主梁的惯性矩——常数由静力平衡:则二、偏心压力法-刚性横梁法1、中心荷载P=1的作用则中心荷载P=1在各主梁间的荷载分布为:当各主梁截面相等时,即则:二、偏心压力法-刚性横梁法2、偏心力矩M=1·e的作用M=1·e,使横截面绕主梁中心o转角ϕ根据力矩平衡条件,有:——各片主梁梁轴到截面形心的距离再根据反力与挠度成正比的关系,有即再根据力矩平衡条件有:有:二、偏心压力法-刚性横梁法2、偏心力矩M=1·e的作用偏心力矩M=1·e作用下各主梁所分配的荷载为e、ai是有共同原点o的横坐标值,应记入正、负号注:又因:当各主梁截面相等时,即则:3、偏心力矩P=1对主梁的总作用任意i号主梁荷载分布的一般公式为(荷载作用于第k号梁)4、利用荷载横向影响线求主梁的横向分布系数由上式得:注:第二个脚标表示荷载作用的位置,第一个脚标表示由该荷载引起的反力的梁号若各梁截面尺寸相同时:例题2:用偏心压力法求跨中各梁的横向分布系数条件:如图所示一桥面净空为净-7+2×0.75m人行道的钢筋混凝土T梁桥,共5根主梁,l=19.5m。

要求:求荷载位于跨中时梁的荷载横向分布系数(汽车荷载和人群荷载)解答过程:⑴

①号梁的横向分布系数

②号梁的横向分布系数⑶③号梁的横向分布系数横向分布系数布置图继续窄桥,采用偏心压力法计算荷载横向分布系数返回三、修正的偏心压力法偏心压力法的缺点:主梁抗扭刚度GIT=0计算原理边梁受力偏大修正的偏心压力法k号梁的横向影响线坐标为:第一项:中心荷载P=1引起,无转动,与主梁抗扭无关。第二项:偏心力矩M=1·e引起,转动——竖向挠度+扭转。结论:要计入主梁抗扭影响,只需对第二项给予修正。在M作用下每片主梁除产生不相同的挠度wi″外尚转动一个相同的角由横隔梁的平衡得:由材料力学:任意k号梁的反力为三、修正的偏心压力法考虑主梁抗扭刚度后任意k号梁的横向影响线竖标为:其中:说明:1)注意ai、ak正、负号;2)β=1时,为偏心压力法;β<1时,为修正偏心压力法;3)上式针对等截面简支梁的跨中截面而言;4)主梁截面相同时,主梁间距相同时5)计算时,G=0.425EITi计算方法例题3:用修正的偏心压力法求跨中各梁的横向分布系数条件:如图所示一桥面净空为净-7+2×0.75m人行道的钢筋混凝土T梁桥,共5根主梁,l=19.5m。

要求:求荷载位于跨中时梁的荷载横向分布系数(汽车荷载和人群荷载)计算步骤:1、计算I和IT2、计算抗扭修正系数3、计算横向影响线竖标4、作最不利荷载布置,计算横向分布系数解答过程:⑴计算I和IT

主梁抗弯惯距:主梁抗扭惯距:求主梁截面重心位置ax翼板的换算平均高度h=(8+14)/2=11cm对于翼板,,查表得;对于梁肋,查表得⑵计算抗扭修正系数本桥各主梁得横截面均相等,,梁数n=5,并取,则有

⑶计算①号梁横向影响线竖标值横向分布系数布置图继续⑷计算②号梁横向影响线竖标值⑸计算③号梁横向影响线竖标值计算结果表明,计及抗扭影响的荷载横向分布系数比不计抗扭影响的荷载横向分布系数降低了返回四、铰接板(梁)法1、适用场合①用现浇企口缝连接的装配式板桥;②翼板间用焊接钢板或伸出交叉钢筋连接,无中间横隔梁的装配式梁桥。2、基本假定①竖向荷载作用下,结合缝内只传递竖向剪力g(x);②采用半波正弦荷载分析跨中荷载横向分布的规律——使荷载、挠度、内力三者变化规律统一四、铰接板(梁)法3、铰接板的荷载横向分布在半波正弦荷载作用下,产生缝间铰接力分析时,取跨中单位长度的截割段,并用峰值gi表示:P=1作用于1#板时,一般,n条板梁,(n-1)条铰缝,(n-1)个gi求得gi后,即可用平衡原理求得Pi11号板p11=1-g112号板p21=g11-g213号板p31=g21-g314号板p41=g31-g41

5号板p51=g41“力法”求解:由变形协调条件,得正则方程:基本体系δ11g11+δ12g21+δ13g31+δ14g41+δ1p=0δ21g11+δ22g21+δ23g31+δ24g41+δ2p

=0δ31g11+δ32g21+δ33g31+δ34g41+δ3p

=0δ41g11+δ42g21+δ43g31+δ44g41+δ4p

=0式中:δik—铰接缝k内作用单位正弦铰接力在铰接缝i处引起的竖向相对位移;

δip—外荷载p在铰接缝i处引起的竖向位移。变形协调四、铰接板(梁)法3、铰接板的荷载横向分布变位系数计算设中心作用荷载在板跨中央产生的挠度为wi,扭矩引起的跨中扭角为i,这样在板块左侧产生的总挠度为wi+bii/2,在板块右侧则为wi-bii/2。则正则方程中的常系数为:

δ11=w1+b11/2+w2+b22/2;…δ44=w4+b44/2+w5+b55/2δ21=δ12=-(w2-b22/2);…δ34=δ43=-(w4-b44/2)δ41=δ14=δ31=δ13=δ42=δ24=0;δ1p=-w1;

δ2p=δ3p=δ4p=0式中:wi—第i号板在板的中心荷载作用下板跨中央产生的挠度,利用材料力学公式计算;

bi—第i号板的宽度;

i—第i号板在扭矩mt=bi/2作用下引起的跨中扭角,利用材料力学公式计算四、铰接板(梁)法3、铰接板的荷载横向分布变位系数计算当横截面各板块尺寸相同,刚度相同时,上述系数可简化为:δ11=δ22=δ33=δ44=2(w+b/2)δ12=δ21=δ23=δ32=δ34=δ43=-(w-b/2)δ13=δ31=δ14=δ41=δ24=δ42=0δ1p=-w;δ2p=δ3p=δ4p=0

将上述系数代入典型力法方程,使全式除以w并设刚度参数γ=b/2w,则得正则方程的简化形式:

2(1+γ)g11-(1-γ)g21=1

-(1-γ)g11+2(1+γ)g21-(1-γ)g31=0

-(1-γ)g21+2(1+γ)g31-(1-γ)g41=0

-(1-γ)g31+2(1+γ)g41=0根据材料力学公式可求出刚度参数γ=b/2w=5.8I(b/l)2/IT四、铰接板(梁)法4、铰接板桥的荷载横向影响线和横向分布系数各板块不相同时,必须将半波正弦荷载在不同的板条上移动计算;各板块相同时,根据位移互等定理,荷载作用在某一板条时的内力与该板条的横向分布影响线相同位移互等定理板条相同横向分布系数在横向分布影响线上加载四、铰接板(梁)法4、铰接板桥的荷载横向影响线和横向分布系数说明:1)将单位荷载作用于第i根梁,同理可得第i根梁横向影响线;2)有了影响线,各类荷载横向分布系数计算方法同前。3)为计算方便,在实际设计中,对于不同梁数、不同几何尺寸的铰接板桥的横向分布影响线竖标值的计算结果可以列为表格,供设计时查用(γ=0.00~2.00)。非表列γ值可利用直线内插求得;四、铰接板(梁)法5、刚度参数γ的计算但计算ω材料力学,梁的挠曲方程积分并代入边界条件得:当时,跨中挠度为:计算Φ材料力学,扭转微分方程积分并代入边界条件得:当时,跨中扭角为:计算γ说明:①G=0.425E②

IT的计算同前。例4:铰接板桥荷载横向分布系数计算已知:l=12.60m,铰接空心板桥,桥面净空:净—7+2×0.75m,9块空心板。求解:汽车、人群荷载横向分布系数继续解答过程:⑴计算空心板截面抗弯惯距I

⑵计算空心板的抗扭惯距IT⑶计算刚度参数γ本例空心板是上下对称截面,形心轴位于高度中央,故其抗弯惯矩为:⑷计算跨中荷载横向分布影响线

从铰接板荷载横向分布影响线计算用表的梁9-1、9-3和9-5的分表中,在γ=0.02与0.04之间按直线内插法求得γ=0.0214的影响线竖标值η1i、η3i、η5i。计算结果见下表。将表中η1i、η3i、η5i之值按一定比例尺,绘于各号板的轴线下方,连接成光滑曲线后,得到1号、3号和5号板的荷载横向分布影响线(图b、c和d所示)。本例空心板截面可近似简化为图b中虚线所示的薄壁箱形截面来计算IT

,则得:⑸计算荷载横向分布系数按《桥规》沿横向确定最不利荷载位置后,则各板的横向分布系数计算如表所示。

1、3和5号板的荷载横向分布影响线(尺寸单位:cm)η1i、η3i、η5i的计算结果板号γ单位荷载作用位置(i号板中心)∑ηki12345678910.022361941471138870574946≈10000.0430622215510470483526230.0214241197148112876855474430.0214716016414111087726257≈10000.04155181195159108745340350.02141481631661421108671605550.0288951101341481341109588≈10000.04708210815117815110882700.021487941101351501351109487

1号板Mcq=(0.197+0.119+0.086+0.056)/2=0.229

Mcr=0.235+0.044=0.279

2号板

Mcq=(0.161+0.147+0.108+0.073)/2=0.245

Mcr=0.150+0.055=0.205

Mcq=(0.103+0.140+0.140+0.103)/2=0.243

Mcr=0.088+0.088=0.176

3号板五、铰接梁法1、适用场合无中横隔梁,仅在翼缘连接或仅通过桥面铺装进行连接的装配式肋梁桥2、基本假定①各主梁除刚体位移外,还存在截面本身的变形;②采用半波正弦荷载分析跨中荷载横向分布的规律——使荷载、挠度、内力三者变化规律统一3、与铰接板法的区别变位系数中增加桥面板变形项返回六、刚接梁法1、适用场合无中横隔梁,翼缘板采用刚性连接的肋梁桥(包括整体式和具有可靠湿接缝的)2、基本假定①各主梁间除传递竖向剪力外,还传递横向弯距;②采用半波正弦荷载分析跨中荷载横向分布的规律——使荷载、挠度、内力三者变化规律统一3、与铰接板(梁)法的区别未知数增加一倍,力法方程增加一倍。七、荷载横向分布系数沿桥跨的变化1、关于m的分析m的规律:不同梁号,m不同不同内力,m不同不同截面,m不同m的计算方法:荷载位于支点:m0,杠杆法(不考虑支座弹性变形)荷载位于跨中:mC,其它方法(所有主梁均参加工作)荷载位于其它截面:m0

m≠mC,(精确计算繁琐)2、m的取值计算跨中弯距时m的取值:前述mc均由分析跨中弯距而得考虑mc沿L变化不大跨中荷载影响大(弯距包络图跨中竖标大)m=mc计算支点剪力时m的取值:影响面纵横向完全异形,无法做变量分离,不能得出一个简化的在全跨单一的荷载横向分布系数七、荷载横向分布系数沿桥跨的变化3、m的习惯处理方法①无中间横隔梁或仅有一根中横隔梁时②有多根横隔梁时第一根横隔梁说明:实用中(1)求弯距:跨中(Mmax),可按mc计算,其它截面,一般按mc计算,但mc与m0相差较大时,考虑其变化(2)求剪力:支点(Qmax),近端考虑变化,远端不考虑其它截面,视具体情况考虑其变化返回荷载计算恒载、活载→主梁M、V计算截面的确定小跨径桥跨中Mmax:二次抛物线变化支点和跨中的Q:直线变化较大跨径除此之外,还应计及1/4截面和变截面处的M、V§3.4主梁内力计算3.4.1恒载内力计算恒载计算方法①一般简支梁桥:将横梁、人行道、铺装层、栏杆等恒载均摊到各根主梁②组合式简支梁桥:按施工组合情况,分阶段计算③预应力简支梁桥:分阶段计算得到计算荷载g后,按《材料力学》公式计算内力M、Q恒载计算内容:一期恒载+二期恒载计算图式:弯距影响线剪力影响线计算公式弯距:

剪力:

恒载计算方法

式中:3.4.2活载内力计算计算方法①求横向分布系数m②应用主梁内力影响线,将荷载乘m后,在纵向按最不利位置布载,求得主梁最大活载内力主梁活载内力计算分两步跨中截面弯距车道荷载:人群荷载:-由不变的计算的内力值支点截面剪力-考虑靠近支点处横向分布系数的变化而引起的内力增(减)值1.车道荷载2.人群荷载车道荷载-支点剪力计算图

1)由集中荷载引起的支点截面剪力(a)当时,将集中荷载

作用于支点截面处,引起的支点截面剪力最大:

(b)当时,将集中荷载作用在距左支点x位置处,对应于作用位置处的横向分布系数值:对应于作用位置处剪力影响线的纵标:则支点剪力为:注:为取得剪力最大,令,求得x值(0≤x≤a,若解得

x>a,则x=a)继续支点剪力计算图

车道荷载-支点剪力计算图

2)由均布荷载

引起的支点截面剪力(a)按不变的计算均布荷载引起的内力值,得:

(b)考虑横向分布系数变化区段,均布荷载引起的内力变化值:由车道荷载的均布荷载引起的支点剪力:注:当时,扩号中的第二项为负值。车道荷载

3)车道荷载引起支点截面剪力:

a-梁端横向分布系数的变化区段长-对应于横向分布系数变化段附加三角形重心位置(距支点a/3处)的内力影响线纵坐标人群荷载人群荷载为均布荷载,由其引起的支点剪力与由车道荷载的均布荷载引起的支点剪力计算方法相同(a)按不变的计算人群荷载引起的内力值,得:

(b)考虑横向分布系数变化区段,人群荷载引起的内力变化值:由人群荷载引起的剪力:注:-单侧人行道人群荷载集度例题5:活载作用下主梁的内力计算(计算跨径19.5m)条件:如图所示五梁式钢筋混凝土简支梁桥。桥梁宽:净9+2×1.0m,设计荷载公路-Ⅱ级,人群荷载3.0kN/m,计算跨径19.5m,冲击系数μ=0.191,①号梁荷载横向分布系数汇总于下表:自跨中至1/4段的分布系数支点的分布系数车道荷载人群车道荷载人群0.6110.5990.4091.273要求:计算①号梁的跨中弯距和支点截面剪力继续返回解答过程:(1)冲击系数:μ=0.191,1+μ=1.191

(3)跨中弯距跨中弯距影响线的最大纵标:

跨中弯距影响线的面积:(2)车道荷载标准值计算:Pk=178.5kN,qk=7.875kN①车道荷载:②人群荷载:解答过程:

(4)支点剪力:1.2Pk=214.2kN,qk=7.875kN①车道荷载:由得:x=5.06m>a=4.875m,取x=4.875m②人群荷载:内力组合-承载能力极限状态内力组合和包络图内力包络图沿梁轴的各个截面处,将所采用控制设计的计算内力值按适当的比例尺绘成纵坐标,连接这些坐标点而绘成的曲线,就称为内力包络图,条件:已知某跨径为17.5m的单孔钢筋混凝土简支梁桥、

其跨中截面的弯距标准值如下:永久作用:191.9KN.m,汽车荷载:77.6KN.m,人群荷载:1.1KN.m例题6:作用效应的基本组合(弯距)要求:进行内力组合解答过程:①确定结构重要性系数:②永久作用效应的分项系数:③汽车荷载效应的分项系数:④人群荷载效应的分项系数:⑤人群荷载效应的组合系数:⑥基本组合:

返回计算目的:

保证结构的整体性,使主梁能够共同受力计算方法:精确法(复杂)§3.5横隔梁内力计算偏心压力法√GM法×3.5.1力学模型计算横隔梁位置跨中内横隔梁(∵受力最大,其余按此梁计算)横隔梁内力计算方法应和主梁计算方法一致力学模型将桥梁的中横隔梁近似地视为竖向支承在多根弹性主梁上的多跨弹性支承连续梁。横隔梁计算图示

3.5.2横隔梁的内力影响线计算原理计算公式横隔梁计算图示在跨中单位荷载P=1作用下,各主梁反作用于横隔梁上的力为Ri,由平衡条件得横隔梁任意截面r的内力为:①荷载P=1位于截面r的左侧②荷载P=1位于截面r的右侧说明①若r一定,则bi为已知,Ri随e而变,故可由Ri的影响线绘制横隔梁内力影响线②通常,可只求典型截面的M、Q,Mmax靠近桥中线,Qmax桥两侧边缘处③Ri影响线为直线,M、Q影响线为折线④亦可利用修正的偏心压力法,仅Ri影响线不同,计算原理相同⑤横隔梁弯距在靠近桥中线截面处较大,剪力则在靠近桥两侧边缘处的截面最大

按偏心压力法计算横隔梁的R、M和Q影响线3.5.3作用在横隔梁上的计算荷载荷载在相邻横隔梁之间按杠杆原理法传递中横梁有轮载作用前后轮载对其也有影响计算假定实际受力汽车(车辆荷载)人群3.5.4横隔梁内力计算汽车(车辆荷载)人群②活载内力计算:将桥梁横向各轮重布置在横隔梁内力影响线上,找到最不利布置状态,就可以求得作用在一根横隔梁上的最大(或最小)内力值①恒载内力一般很小,可忽略不计③汽车荷载计冲击和车道折减。④横隔梁和普通的连续梁一样,在其跨中位置承受最大正弯矩,支点截面存在负弯矩和较大的剪力,因此,设计时应计算。说明:横隔梁内力计算图式例题7:横隔梁内力计算条件:一座五梁式装配式钢筋混凝土简支梁桥的主梁和横隔梁截面如图所示,计算跨径l=19.5m。已知冲击系数μ=0.191要求:计算跨中横隔梁在②和③号主梁之间r-r截面上的弯距和靠近1号主梁处的截面剪力解答过程:对于跨中横隔梁的最不利荷载布置有两种情况

⑴确定作用在中横隔梁上的计算荷载取计算荷载:⑵绘制中横隔梁的内力影响线P=1作用在①号梁轴上时()P=1作用在②号梁轴上时()P=1作用在⑤号梁轴上时()P=1作用在③号梁轴上时()根据计算所得竖标值绘制中横隔梁的弯距影响线继续解答过程:⑶绘制1号梁的剪力影响线绘制1号梁剪力影响线⑷截面内力计算将求得的计算荷载在相应的影响线上按最不利荷载位置加载,得到弯距和剪力最大值P=1作用在计算截面以右时:P=1作用在计算截面以左时:

⑸内力组合对于承载能力极限状态内力组合,横隔梁恒载甚小,计算时忽略不计返回计算目的:

保证结构有足够的刚度过度变形结果:冲击力↗,行人不适、铺装层及辅助设备损坏§3.6挠度、预拱度的计算3.6.1挠度计算公式结力、材力计算公式:简支、跨中、均布荷载q:简支、跨中、集中荷载P:B-抗弯刚度B=?有开裂截面3.6.2抗弯刚度取值钢筋混凝土构件:采用等效刚度,原理:实梁实际刚度简化梁等效梁简化等效裂缝端部弯距作用下构件转角相等原则计算公式3.6.2抗弯刚度取值预应力混凝土构件:全预应力混凝土和A类预应力混凝土构件:允许开裂的B类预应力混凝土构件:在开裂弯距作用下:在作用下:开裂弯距:3.6.3考虑荷载长期效应的影响长期效应:t混凝土徐变混凝土与钢筋粘结力退化混凝土拉、压区收缩变形不一致EcB规范要求:按荷载短期效应计算的挠度,应乘以长期增长系数1.6C40以下混凝土1.45~1.35,C40~

C80混凝土3.6.3挠度限值钢筋混凝土梁:消除结构自重产生的长期挠度后:梁桥梁桥悬臂端PC、RC梁跨长悬臂长3.6.4预拱度规范小桥常遇荷载下桥梁尽量为直线预应力混凝土梁:中小跨预应力混凝土梁,一般:规范:当预加应力产生的长期反拱值大于按荷载短期效应组合计算的长期挠度时,可以当不满足上述条件时,应预应力反拱值例题8:挠度和预拱度计算条件:计算跨径L=20m的装配式钢筋混凝土T梁桥,其截面尺寸如图,混凝土强度等级C25,HRB335级钢筋焊接骨架,,主筋为钢筋,钢筋的重心至梁底距离为99mm,钢筋重心至梁底距离为177mm。承受的跨中弯距为:恒载弯距,汽车荷载弯距人群荷载弯距值为,冲击系数(1+μ)=1.191,要求:进行挠度和预拱度的计算

解答过程:⑴刚度计算《公桥规》不考虑冲击力的汽车荷载标准弯距:人群荷载标准弯距:⑵计算人群荷载和汽车荷载(不计冲击力)作用下梁的挠度汽车荷载:人群荷载:⑶计算结构恒载弯距作用下梁的跨中挠度⑷荷载短期效应组合并考虑荷载长期效应影响产生的长期挠度按《公预规》必须设置预拱度预拱度的跨中值为:返回补充《混凝土结构设计原理》预应力钢筋的计算预应力钢筋数量估算预应力混凝土梁各工作阶段受力分析预应力损失计算预应力钢筋数量估算:三类加筋混凝土结构:部分预应力混凝土:,A类:当对拉应力加以限制时。注:跨径大于100m桥梁的主要受力构件,不宜进行部分预应力混凝土设计非预应力混凝土:,不加预应力的普通钢筋混凝土构件。全预应力混凝土:,此类构件在作用短期效应组合下控制截面受拉边缘允许出现拉应力。此类构件在作用短期效应组合下控制截面受拉边缘不允许出现拉应力。(不得消压)B类:当拉应力超过限值,但裂缝宽度未超过规定的限制时。预应力钢筋数量估算的一般方法是:首先根据结构的使用性能要求确定预应力钢筋的数量,然后由构件的承载能力极限状态要求,确定普通钢筋的数量。(一)按抗裂要求估算预应力钢筋数量1.全预应力混凝土构件,在作用短期效应组合下,控制截面边缘混凝土的法向拉应力应不大于永存预加力产生的预压应力的85%(或80%)2.A类部分预应力混凝土构件,在作用短期效应组合下,控制截面边缘混凝土的法向拉应力应不得大于式中:——荷载短期效应组合下控制截面的弯距

——预应力钢筋永存预加力的合力

——构件截面面积和对截面受拉边缘的弹性抵抗距,设计时采用毛截面

——预应力钢筋重心对混凝土截面重心轴的偏心距

全预应力构件:A类部分预应力构件:预应力钢筋截面面积:预应力钢筋数量估算:以单筋矩形截面为例:截面尺寸如图所示,b、h、材料强度等级已知,暂不考虑受压区预应力钢筋和普通钢筋的影响,(二)按强度要求估算预应力钢筋数量采用正截面承载能力计算公式的简单形式,则:两式联立求解,得预应力钢筋面积:式中:——混凝土抗压强度设计值

——预应力钢筋抗拉强度设计值对带“马蹄”的T形截面梁及工字形梁,可利用经验公式估算预应力钢筋面积式中:——工程经验系数,一般采用

h——构件混凝土截面高度

——分项系数,取则,计算所需的预应力筋束数为:继续矩形截面预应力混凝土受弯构件正截面强度计算简图返回例题:全预应力构件的钢筋估算条件:有一跨径L=30m的主梁,工形截面如图所示,截面总高h=1.3m,截面重心到下、上边缘的距离分别为,,毛截面的几何特性为。荷载短期效应弯距组合设计值为:要求:估算纵向预应力钢筋

解答过程:根据跨中截面正截面抗裂要求,确定预应力钢筋数量假设,则拟采用钢饺线,单根钢饺线的公称截面面积,抗拉强度标准值,张拉控制应力取,预应力损失按张拉控制应力的20%估算。所需预应力钢饺线的根数为:采用4束预应力钢筋束,HVM15-8型锚具,预应力筋截面面积采用金属波纹管成孔,预留管道直径为85mm,预应力筋束布置如图:

取32根继续返回作业:A类部分预应力构件的钢筋估算条件:有一跨径L=30m的主梁,工形截面如图所示,截面总高h=1.3m,截面重心到下、上边缘的距离分别为,,毛截面的几何特性为。荷载短期效应弯距组合设计值为:要求:确定预应力钢筋及普通钢筋数量

解答过程:(1)预应力钢筋数量的确定及布置假设,则拟采用钢饺线,单根钢饺线的公称截面面积,抗拉强度标准值,张拉控制应力取,预应力损失按张拉控制应力的20%估算。所需预应力钢饺线的面积为:采用4束预应力钢筋束,HVM15-6型锚具,预应力筋截面面积采用金属波纹管成孔,预留管道直径为75mm。

解答过程:(2)普通钢筋数量的确定及布置设预应力筋束和普通钢筋的合力点到截面底边的距离为,则:解得:采用10根直径为20mm的HRB400钢筋,钢筋截面面积在梁底布置成一排,其间距为66mm,钢筋重心到截面底边距离为。由公式,求解x则:返回预应力混凝土梁各工作阶段的受力分析:(后张法)预应力混凝土构件在制作、运输和安装过程中,将承受不同的荷载。本阶段构件在预应力作用下,全截面参与工作,处于弹性工作阶段。(一)施工阶段1.预加应力阶段:式中:——传力锚固时的预加力,

——计算截面处梁的自重弯距标准值

——相对于净截面重心轴的预加力偏心距

——混凝土净截面面积

——混凝土净截面惯性距,

——所求应力之点至净截面重心轴的距离

——混凝土相对于上、下边缘抗弯截面模量2.运输、安装阶段:

此阶段梁受到预加力和自重的共同作用。计算要求:①控制受弯构件上、下缘混凝土的最大拉应力和压应力以及梁腹的主应力都不应超过《规范》的规定值;

②控制预应力的最大张拉应力;

③保证锚具下混凝土局部承压的容许承载能力大于实际承受的压力,并有足够的安全度,以保证梁体不出现水平纵向裂缝。此阶段所受荷载仍为预加力和梁的自重。但引起预应力损失因素增加,预应力比预加应力阶段小,同时梁的自重应根据《规范》规定计入1.2或0.85的动力系数。特别注意:需验算构件支点或吊点处上缘混凝土的拉应力。预应力混凝土梁各工作阶段的受力分析:(后张法)该阶段是指桥梁建成通车后整个使用阶段。这一工作阶段经历时间较长,各项预应力损失相继发生,并全部完成,预应力筋建立相对不变的永存预应力。(二)从承受使用荷载到出现裂缝前的整体工作阶段1.加载至受拉边缘混凝土预压应力为零2.加载至受拉区裂缝即将出现当构件在消压状态后继续加载,并使受拉区混凝土应力达到抗拉极限强度时的应力状态,称为裂缝即将出现状态,此时荷载产生的弯距称为开裂弯距式中:——预应力钢筋的永存预加力

——计算截面处梁的活载弯距标准值

——构件换算截面面积和惯性距

——所求应力之点至净截面重心轴和换算截面重心轴的距离把受拉区边缘混凝土应力从零增加到应力为所需的外弯距用表示(三)带裂缝工作阶段当荷载继续增加时,梁的受拉区很快进入塑性状态,当拉应力达到混凝土抗拉强度极限时,梁的下缘就会出现裂缝。裂缝出现,标志着混凝土用以抵消拉应力的预压应力贮备大部分被抵消。随着荷载增加,裂缝进一步向纵深发展,混凝土受压区逐渐减小,裂缝宽度不断扩大,预应力混凝土梁逐渐转变为钢筋混凝土梁(四)破坏阶段弹性阶段应力计算:(后张法)预应力混凝土受弯构件,在预应力和构件自重等的施工荷载作用下截面边缘混凝土的法向应力应符合下列规定:(一)短暂状况构件的应力计算1.压应力:式中:——传力锚固时的预加力,

——计算截面处梁的自重弯距标准值

——相对于净截面重心轴的预加力偏心距

——混凝土净截面面积

——混凝土相对于上边缘抗弯截面模量,

——混凝土相对于下边缘抗弯截面模量,2.拉应力:

弹性阶段应力计算:(后张法)使用阶段预应力混凝土受弯构件正截面混凝土的压应力和预应力钢筋的拉应力,应符合下列规定:(二)持久状况预应力混凝土构件的应力计算1.受压区混凝土的最大压应力:2.受拉区预应力钢筋的最大拉应力:

未开裂构件允许开裂构件未开裂构件允许开裂构件未开裂构件允许开裂构件⑴对钢饺线、钢丝⑵对精扎螺纹钢筋式中:——全预应力混凝土和A类预应力混凝土受弯构件,受拉区预应力钢筋扣除全部预应力损失后的有效预应力

——由预加力产生的混凝土法向拉应力使用阶段正截面抗裂验算:抗裂验算的目的是通过控制截面的拉应力,使全预应力混凝土构件和A类部分预应力混凝土构件不出现裂缝。预应力混凝土结构的抗裂验算包括正截面抗裂验算和斜截面抗裂验算两部分。(一)正截面抗裂应对构件正截面混凝土的拉应力进行验算1.全预应力混凝土构件,在作用短期效应组合下:2.A类预应力混凝土构件:

预制构件:在荷载长期效应组合下:分段浇筑或砂浆接缝的纵向分块构件:在荷载短期效应组合下:(二)斜截面抗裂应对构件斜截面混凝土的主拉应力进行验算1.全预应力混凝土构件,在作用短期效应组合下:2.A类预应力混凝土构件,在作用短期效应组合下:预制构件:分段浇筑或砂浆接缝的纵向分块构件:预制构件:分段浇筑或砂浆接缝的纵向分块构件:

使用阶段正截面抗裂验算:

式中:——在作用短期效应组合下构件抗裂验算边缘混凝土的法向拉应力

——扣除全部预应力损失后的预加力在构件抗裂验算边缘产生的混凝土预压应力

——在作用长期效应组合下构件抗裂验算边缘混凝土的法向拉应力

——由作用短期效应组合和预加力产生的混凝土主拉应力

——混凝土的抗拉强度强度标准值式中:——按作用短期效应组合计算的弯距值

——按荷载长期效应组合计算的弯距值,在组合的活荷载弯距中,仅考虑汽车人群等直接作用于构件的荷载产生的弯距值注:后张法构件在计算预施应力阶段由构件自重产生的拉应力时,可改用,为构件净截面抗裂验算边缘的弹性抵抗距。例题:后张法预应力T形梁的跨中截面应力验算条件:某后张法预应力混凝土T形梁,已知跨中截面的一些基本参数,钢束张拉锚下控制应力:,采用高强钢丝为预应力筋束,钢丝束的截面面积,混凝土采用C40,,预应力钢筋与混凝土的弹性模量之比为:要求:验算跨中截面的应力

继续跨中截面的净截面、换算截面几何特性表跨中截面A()()()()()()净截面498962.9112.198.2换算截面529368.51

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论