带电粒子在磁场中的运动_第1页
带电粒子在磁场中的运动_第2页
带电粒子在磁场中的运动_第3页
带电粒子在磁场中的运动_第4页
带电粒子在磁场中的运动_第5页
已阅读5页,还剩49页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

例1、如图所示,在y小于0的区域内存在匀强磁场,磁场方向垂直于xy平面并指向纸面外,磁感应强度为B,一带正电的粒子以速度从O点射入磁场,入射速度方向为xy平面内,与x轴正向的夹角为θ,若粒子射出磁场的位置与O点的距离为L,求该粒子电量与质量之比。【审题】本题为一侧有边界的匀强磁场,粒子从一侧射入,确定从边界射出,只要依据对称规律①画出轨迹,并应用弦切角等于回旋角的一半,构建直角三角形即可求解。一、单边界磁场例2、如图,MN是一荧光屏,当带电粒子打到荧光屏上时,荧光屏能发光。MN的上方有磁感应强度为B的匀强磁场,磁场方向垂直纸面对里。P为屏上的一个小孔,PQ与MN垂直。一群质量为m、带电量q的粒子(不计重力),以相同的速率v,从P处沿垂直于磁场方向射入磁场区域,且分布在与PQ夹角为θ的范围内,不计粒子间的相互作用。则在荧光屏上将出现一个条形亮线,其长度为?PNMBθQθθl[练习].如图,在一水平放置的平板MN的上方有匀强磁场,磁感应强度的大小为B,磁场方向垂直于纸面对里。很多质量为m带电量为+q的粒子,以相同的速率v沿位于纸面内的各个方向,由小孔O射入磁场区域。不计重力,不计粒子间的相互影响。下列图中阴影部分表示带电粒子可能经过的区域,其中。哪个图是正确的?()A总结:当大量的带电粒子以相同的速率从同一位置垂直磁场向各个方向射出时,向各个方向运动的粒子运动的轨迹都是半径相同的圆,通过旋转圆的方法,就可以把这些不同圆的轨迹找到,同时也可找到有关要求的范围。例3如图所示,一电荷量为q的带电粒子(不计重力)自A点以速度v垂直磁场边界射入磁感应强度为B、宽度为d的匀强磁场中,穿过磁场时速度方向与原来入射方向的夹角为300,则该带电粒子的质量m是多少?穿过磁场所用的时间为多少?[分析]本题解答的关键是画出粒子运动的轨迹图,用圆的相关学问求解。[出题意图]引出一般性的方法1、如何确定圆心?(圆上两点切线的法线的交点)2、如何求半径?(几何方法,常是解三角形)3、如何求粒子在磁场中的运动时间?(利用圆弧所对圆心角)二、双边有界磁场例4、如图所示真空中宽为d的区域内有强度为B的匀强磁场方向如图,质量m带电-q的粒子以与CD成θ角的速度VO垂直射入磁场中。要使粒子必能从EF射出,则初速度VO应满足什么条件?EF上有粒子射出的区域?【审题】如图所示,当入射速度很小时电子会在磁场中转动一段圆弧后又从同一侧射出,速率越大,轨道半径越大,当轨道与边界相切时,电子恰好不能从另一侧射出,当速率大于这个临界值时便从右边界射出,依此画出临界轨迹,借助几何学问即可求解速度的临界值;对于射出区域,只要找出上下边界即可。【总结】带电粒子在磁场中以不同的速度运动时,圆周运动的半径随着速度的变更而变更,因此可以将半径放缩,运用“放缩法”探究出临界点的轨迹,使问题得解;对于范围型问题,求解时关键找寻引起范围的“临界轨迹”及“临界半径R0”,然后利用粒子运动的实际轨道半径R与R0的大小关系确定范围。例5、一个垂直纸面对外的有界匀强磁场形态如图所示,磁场宽度为d。在垂直B的平面内的A点,有一个电量为q、质量为m、速度为v的带电粒子进入磁场,请问其速度方向与磁场边界的夹角为多少时粒子穿过磁场的时间最短?(已知mv/Bq>d)解:带电粒子在磁场中的运动时间因为v⊥B,所以f⊥V,粒子在匀强磁场中作匀速圆周运动,速度v不变。欲使穿过磁场时间最短,须使弧长s有最小值,则要求弦最短。ORdROθθ与边界的夹角为(90°-θ)中垂线例6、如图所示,A、B为一对平行板,板长为L,两板距离为d,板间区域内充溢着匀强磁场,磁感应强度大小为B,方向垂直纸面对里,一个质量为m,带电量为+q的带电粒子以初速v0,从A、B两板的中间,沿垂直于磁感线的方向射入磁场。求v0在什么范围内,粒子能从磁场内射出?【审题】粒子射入磁场后受到洛仑兹力的作用,将做匀速圆周运动,圆周运动的圆心在入射点的正上方。要想使粒子能射出磁场区,半径r必需小于d/4(粒子将在磁场中转半个圆周后从左方射出)或大于某个数值(粒子将在磁场中运动一段圆弧后从右方射出)从左边射出必需满足从右边射出必需满足三、矩形有界磁场新课标2010宁夏卷25题yxo角度小于90°yxoOv1v2v3依据几何学问可以证明射向圆形匀强磁场中心的带电粒子,都好象是从匀强磁场中心射出来的。四、圆形有界磁场思索:假如带电粒子运动轨迹半径等于圆形磁场半径,则依据几何学问可以证明:随意方向射入的粒子出射速度方向与过入射点O圆形磁场边界的切线平行O例8、电视机的显像管中,电子(质量为m,带电量为e)束的偏转是用磁偏转技术实现的。电子束经过电压为U的加速电场后,进入一圆形匀强磁场区,如图所示,磁场方向垂直于圆面,磁场区的中心为O,半径为r。当不加磁场时,电子束将通过O点打到屏幕的中心M点。为了让电子束射到屏幕边缘P,须要加磁场,使电子束偏转一已知角度θ,此时磁场的磁感强度B应为多少?【审题】本题给定的磁场区域为圆形,粒子入射方向已知,则由对称性,出射方向确定沿径向,而粒子出磁场后作匀速直线运动,相当于知道了出射方向,作入射方向和出射方向的垂线即可确定圆心,构建出与磁场区域半径r和轨迹半径R有关的直角三角形即可求解。例9、图中半径r=10cm的圆形区域内有匀强磁场,其边界跟y轴在坐标原点O处相切;磁场B=0.33T垂直于纸面对内,在O处有一放射源S可沿纸面对各个方向射出速率均为v=3.2×106m/s的α粒子;已知α粒子质量为m=6.6×10-27kg,电量q=3.2×10-19c,则α粒子通过磁场空间的最大偏转角θ及在磁场中运动的最长时间t各多少?【审题】本题α粒子速率确定,所以在磁场中圆周运动半径确定,由于α粒子从点O进入磁场的方向不同故其相应的轨迹与出场位置均不同,则粒子通过磁场的速度偏向角θ不同,要使α粒子在运动中通过磁场区域的偏转角θ最大,则必使粒子在磁场中运动经过的弦长最大,因而圆形磁场区域的直径即为粒子在磁场中运动所经过的最大弦,依此作出α粒子的运动轨迹进行求解。【总结】当速度确定时,弧长(或弦长)越长,圆周角越大,则带电粒子在有界磁场中运动的时间越长。例10、一质量m、带电q的粒子以速度V0从A点沿等边三角形ABC的AB方向射入强度为B的垂直于纸面的圆形匀强磁场区域中,要使该粒子飞出磁场后沿BC射出,求圆形磁场区域的最小面积。

【审题】由题中条件求出粒子在磁场中作匀速圆周运动的半径为确定,故作出粒子沿AB进入磁场而从BC射出磁场的运动轨迹图中虚线圆所示,只要小的一段圆弧PQ能处于磁场中即能完成题中要求;故由直径是圆的最大弦可得圆形磁场的最小区域必为以直线PQ为直径的圆如图中实线圆所示。【解析】由题意知,圆形磁场区域的最小面积为图中实线所示的圆的面积。∵△ABC为等边三角形,故图中α=30°则:故最小磁场区域的面积为【总结】依据轨迹确定磁场区域,把握住“直径是圆中最大的弦”。例11、(全国卷Ⅱ)26.图中左边有一对平行金属板,两板相距为d,电压为V;两板之间有匀强磁场,磁场应强度大小为B0,方向平行于板面并垂直于纸面朝里。图中右边有一边长为a的正三角形区域EFG(EF边与金属板垂直),在此区域内及其边界上也有匀强磁场,磁感应强度大小为B,方向垂直于纸面朝里。假设一系列电荷量为q的正离子沿平行于金属板面,垂直于磁场的方向射入金属板之间,沿同一方向射出金属板之间的区域,并经EF边中点H射入磁场区域。不计重力(1)已知这些离子中的离子甲到达磁场边界EG后,从边界EF穿出磁场,求离子甲的质量。(2)已知这些离子中的离子乙从EG边上的I点(图中未画出)穿出磁场,且GI长为,求离子乙的质量。(3)若这些离子中的最轻离子的质量等于离子甲质量的一半,而离子乙的质量是最大的,问磁场边界上什么区域内可能有离子到达。EFGH五、其它形态的有界磁场EFGHOKI//EFGHO/I例12、核聚变反应须要几百万度以上的高温,为把高温条件下高速运动的离子约束在小范围内(否则不行能发生核反应),通常接受磁约束的方法(托卡马克装置)。如图所示,环状匀强磁场围成中空区域,中空区域中的带电粒子只要速度不是很大,都不会穿出磁场的外边缘而被约束在该区域内。设环状磁场的内半径为R1=0.5m,外半径R2=1.0m,磁场的磁感强度B=1.0T,若被束缚带电粒子的荷质比为q/m=4×107C/㎏,中空区域内带电粒子具有各个方向的速度。试计算:(1)粒子沿环状的半径方向射入磁场,不能穿越磁场的最大速度。(2)全部粒子不能穿越磁场的最大速度。【审题】本题也属于极值类问题,寻求“临界轨迹”是解题的关键。要粒子沿环状的半径方向射入磁场,不能穿越磁场,则粒子的临界轨迹必须要与外圆相切;要使全部粒子都不穿越磁场,应保证沿内圆切线方向射出的粒子不穿越磁场,即运动轨迹与内、外圆均相切。例13、(2009年海南物理16题)如图,ABCD是边长为a的正方形。质量为m、电荷量为e的电子以大小为v0的初速度沿纸面垂直于BC边射入正方形区域。在正方形内适当区域中有匀强磁场。电子从BC边上的随意点入射,都只能从A点射出磁场。不计重力,求:(1)此匀强磁场区域中磁感应强度的方向和大小;(2)此匀强磁场区域的最小面积。ABCDABCDEFABCDOpqEyx(1)(2)1、进一步加强带电粒子在有界匀强磁场中的运动问题2、留意带电粒子在不同场中运动的过渡连接状况磁场Ⅰ电场磁场Ⅱ磁场§8.4带电粒子在复合场中的运动3、可能的组合场状况如下:教学目标4、可能的叠合场状况如下:1、电场+磁场2、电场+磁场+重力场例1、(2005年广东16题)如图所示,在一个圆形区域内,两个方向相反且都垂直于纸面的匀强磁场分布在以直径A2A4为边界的两个半圆形区域Ⅰ、Ⅱ中,A2A4与A1A3的夹角为60º.一质量为m、带电荷量为+q的粒子以某一速度从Ⅰ区的边缘点A1处沿与A1A3成30º角的方向射入磁场,随后该粒子以垂直于A2A4的方向经过圆心O进入Ⅱ区,最终从A4处射出磁场.已知该粒子从射入到射出磁场所用的时间为t,求Ⅰ区和Ⅱ区中磁感应强度的大小.(忽视粒子的重力)[解析]本题“粒子从圆心O垂直于A2A4进入Ⅱ区”是解答的关键,且进入后的速度大小不变,而后依据几何关系作出粒子运动的轨迹图,如图所示.一、组合场例2、(2008年宁夏24.)如图所示,在xOy平面的第一象限有一匀强电场,电场的方向平行于y轴向下;在x轴和第四象限的射线OC之间有一匀强磁场,磁感应强度的大小为B,方向垂直于纸面对外。有一质量为m,带有电荷量+q的质点由电场左侧平行于x轴射入电场。质点到达x轴上A点时,速度方向与x轴的夹角,A点与原点O的距离为d。接着,质点进入磁场,并垂直于OC飞离磁场。不计重力影响。若OC与x轴的夹角为,求(1)粒子在磁场中运动速度的大小:(2)匀强电场的场强大小。[审题]质点在磁场中的轨迹为一圆弧。由于质点飞离磁场时,速度垂直于OC,故圆弧的圆心在OC上。依题意,质点轨迹与x轴的交点为A,过A点作与A点的速度方向垂直的直线,与OC交于O'。[例析]:(1)由几何关系知,AO'垂直于OC',O'是圆弧的圆心。设圆弧的半径为R,则有R=dsin①由洛化兹力公式和牛顿其次定律得 ②将①式代入②式,得 ③(2)质点在电场中的运动为类平抛运动。设质点射入电场的速度为v0,在电场中的加速度为a,运动时间为t,则有v0=vcos④vsin=at⑤d=v0t ⑥联立④⑤⑥得 ⑦设电场强度的大小为E,由牛顿其次定律得qE=ma ⑧联立③⑦⑧得 ⑨xv0yxOBEPv0MRO´yxOBEPv0M练习.如图所示,在xOy平面内的第Ⅲ象限中有沿-y方向的匀强电场,场强大小为E。在第Ⅰ和第Ⅱ象限有匀强磁场,方向垂直于坐标平面对里。有一个质量为m,电荷量为e的电子,从y轴的P点以初速度v0垂直于电场方向进入电场(不计重力),经电场偏转后,沿着与x轴负方向成45º角进入磁场,并能返回到原动身点P。⑴简要说明电子的运动状况,并画出电子运动轨迹的示意图;⑵求P点距坐标原点的距离;⑶电子从P点动身经多长时间再次返回P点?例3、如图所示,两个共轴的圆筒形金属电极,外电极接地,其上匀整分布着平行于轴线的四条狭缝a、b、c和d,外筒的外半径为r,在圆筒之外的足够大区域中有平行于轴线方向的匀整磁场,磁感强度的大小为B。在两极间加上电压,使两圆筒之间的区域内有沿半径向外的电场。一质量为m、带电量为+q的粒子,从紧靠内筒且正对狭缝a的S点动身,初速为零。假如该粒子经过一段时间的运动之后恰好又回到动身点S,则两电极之间的电压U应是多少?(不计重力,整个装置在真空中)abcdSo【审题】带电粒子从S点动身,在两筒之间的电场作用下加速,沿径向穿过狭缝a而进入磁场区,在洛伦兹力作用下做匀速圆周运动。粒子再回到S点的条件是能沿径向穿过狭缝d.只要穿过了d,粒子就会在电场力作用下先减速,再反向加速,经d重新进入磁场区,然后粒子以同样方式经过c、b,再回到S点。练习、如图甲所示,竖直放置的金属板A、B中间开有小孔,小孔的连线沿水平放置的金属板C、D的中轴线,粒子源P可以连续地产生质量为m、电荷量为q的带正电粒子(初速不计),粒子在A、B间被加速后,再进入金属板C、D间偏转并均能从今电场中射出.已知金属板A、B间的电压UAB=U0,金属板C、D长度为L,间距为d.两板之间的电压UCD随时间t变更的图象如图乙所示.在金属板C、D右侧有一个垂直纸面对里的匀强磁场分布在图示的半环形带中,该环形带的内、外圆心与金属板C、D的中心O点重合,内圆半径为Rl.磁感应强度为B0.已知粒子在偏转电场中运动的时间远小于电场变更的周期(电场变更的周期T未知),粒子重力不计.其中,d=;Rl=;B0=求:(1)求粒子离开偏转电场时,在垂直于板面方向偏移的最大距离;(2)若全部粒子均不能从环形磁场的右侧穿出,求环形带磁场的最小宽度;一、质谱仪具有相同核电荷数而不同质量数的原子互称同位素,质谱仪是分别各种元素的同位素并测量它们质量的仪器,它由静电加速器、速度选择器、偏转磁场、显示屏等组成,它的结构原理如图所示。例4、质谱仪是一种测定带电粒子质量和分析同位素的重要工具,从离子源S产生质量为m、电量为q的正离子,其初速可视为零.离子经过加速电压U加速后垂直进入有界匀强磁场(图中线框所示),并沿着半圆周运动而到达照相底片上的P点,测得P点到进入磁场处的距离为x,写出此离子质量的计算式.UPBxS解:组合场的实际应用二、回旋加速器

例5、如图的D形盒的半径为R,用来加速质量为m,带电量为q的质子,使质子由静止加速到能量为E后,由A孔射出。求:(1)加速器中匀强磁场B的方向和大小。(2)设两D形盒间的距离为d,其间电压为U,加速到上述能量所需回旋周数.(3)加速到上述能量所需时间(不计通过缝隙的时间)。A

~Ud解:(1)由qvB=mv2/RE=1/2×mv2(2)质子每加速一次,能量增加为qU,每周加速两次,所以n=E/2qU(3)周期T=2πm/qB且周期与半径r及速度v都无关t=nT=E/2qU×2πm/qB=πmE/q2UBB的方向垂直于纸面对里.(4)假设粒子在磁场中运动时,电场区域场强为零。请画出从粒子第一次射入磁场至第三次离开电场的过程中,电场强度随时间变更的关系图线(不要求写出推导过程,不要求标明坐标刻度值)。【解析】带电粒子在磁场中做匀速圆周运动,由得则

v1:v2:…:vn=r1:r2:…:rn=1:2:…:n(1)第一次过电场,由动能定理得(2)第n次经过电场时,由动能定理得

解得(3)第n次经过电场时的平均速度,

则时间为(4)如图tE例1.在充有确定电量的平行板电容器两极板间有一匀强磁场,已知场强E的方向和磁感应强度B的方向垂直,有一带电粒子束以初速度v0射入,恰能不偏离它原来的运动方向,匀速通过此区域,如图所示,在下列状况下,当变更一个或两个物理条件,而保持其它条件不变.若重力不计,则带电粒子束的运动不受影响的状况是()(A)增大电容器两板间距离;(B)变更磁场方向为垂直纸面对外;(C)增大带电粒子束的射入初速度;(D)将电场和磁场同时增加一倍;(E)使带电粒子束的入射方向变为非水平方向;(F)将图示磁场方向和电场方向同时变更为相反方向;(G)改用一束荷质比不同于原来荷质比的带电粒子束水平射入ADFGV0二、叠合场(混合场)[一]、电场+磁场练习1、如图所示,两块平行放置的金属板,上板带正电,下板带等量负电.在两板间有一垂直纸面对里的匀强磁场.一电子从两板左侧以速度v0沿金属板方向射入,当两板间磁场的磁感应强度为B1时,电子从a点射出两板,射出时的速度为2v.当两板间磁场的磁感应强度变为B2时,电子从b点射出时的侧移量仅为从a点射出时的侧移量的1/4,求电子从b点射出时的速率?解见下页解一:设aO两点电势差为U,电子电量为e,质量m.依据动能定理可知:解二:设O点所在等势面为零电势面,其余同上.依据能量守恒定律可知:电子从b点射出,其守恒方程为:电子从a点射出,其守恒方程为:练习2、设空间存在竖直向下的匀强电场和垂直纸面对里的匀强磁场,如图所示,已知一离子在电场力和洛仑兹力的作用下,从静止起先自a点沿曲线acb运动,到达b点时速度为零,c点是运动的最低点,忽视重力,以下说法中正确的是()A.这离子必带负电荷B.a点和b点位于同一高度C.离子在c点时速度最大D.离子到达b点后,将沿原曲线返回a点EBabc解见下页解:在a点,离子若带负电,离子在合力作用下不行能向下运动,只能带正电.受力如图:a到b的过程,动能不变,合力不做功,由于洛仑兹力不做功,a到c,电场力做正功最多,c点动能最大.受电场力从静止向下运动,洛仑兹力如图,合力向右下方,不行能沿原曲线返回.所以,电场力必不做功,a、b位于同一水平面.qEf=qvBEBabcqEf=qvBqE应选

BC在b点,例2、(四川卷24)如图所示,电源电动势内阻,电阻。间距的两平行金属板水平放置,板间分布有垂直于纸面对里、磁感应强度的匀强磁场。闭合开关,板间电场视为匀强电场,将一带正电的小球以初速度沿两板间中线水平射入板间。设滑动变阻器接入电路的阻值为,忽视空气对小球的作用,取。(1)当时,电阻消耗的电功率是多大?(2)若小球进入板间做匀速度圆周运动并与板相碰,碰时速度与初速度的夹角为,则是多少?【答案】(1)0.6W(2)54Ω[二]、电场+磁场+重力场例3、(2010安徽卷23.)如图1所示,宽度为d的竖直狭长区域内(边界为L1、L2),存在垂直纸面对里的匀强磁场和竖直方向上的周期性变更的电场(如图2所示),电场强度的大小为E0,E>0表示电场方向竖直向上。t=0时,一带正电、质量为m的微粒从左边界上的N1点以水平速度v射入该区域,沿直线运动到Q点后,做一次完整的圆周运动,再沿直线运动到右边界上的N2点。Q为线段N1N2的中点,重力加速度为g。上述d、E0、m、v、g为已知量。(1)求微粒所带电荷量q和磁感应强度B的大小;(2)求电场变更的周期T;(3)变更宽度d,使微粒仍能按上述运动过程通过相应宽度的区域,求T的最小值。tEO2TTE0-E0图2图1dN1N2L1L2v【答案】(1)

(2)(3)EB例4、一个带电微粒在图示的正交匀强电场和匀强磁场中在竖直面内做匀速圆周运动。则该带电微粒必定带_____,旋转方向为_____。若已知圆半径为r,电场强度为E磁感应强度为B,则线速度为_____。带电微粒在重力、电场力、磁场力共同作用下的运动例13.如图所示,空间某一区域内同时存在竖直向下的匀强电场、垂直纸面对里的匀强磁场。带电微粒a、b、c所带电荷电性和电量都相同,以相同的速率在此空间分别向右、向左、向里做匀速运动。有以下推断:①它们都带负电;②它们都带正电;③b的质量最大;④a的质量最大。以上推断正确的是()A.①③B.②④C.①④D.②③abcEB负A逆时针+++++-----+q例5、如图所示,有一质量为m,带电量为+q的小球,从两竖直的带等量异种电荷的平行板上h高处始自由下落,板间有匀强磁场B,磁场方向垂直纸面对里,那么带电小球在通过正交电磁场时()A.确定做曲线运动B.不行能做曲线运动C.可能做匀速直线运动D.可能做匀加速直线运动[分析]小球在P点受力如图:qvBmgqE即使在P点所受电场力和磁场力恰好平衡,在重力作用下向下加速运动,速度增大,洛仑兹力增大,也不行能做直线运动。所受重力、电场力和磁场力不行能平衡,确定做曲线运动。A⑵带电微粒在三种场共存区域中做直线运动。当其速度始终平行于磁场时,不受洛伦兹力,可能做匀速运动也可能做匀变速运动;当带其速度垂直于磁场时,只能做匀速直线运动。总结:⑴带电微粒在三个场共同作用下做匀速圆周运动。必定是电场力和重力平衡,而洛伦兹力充当向心力。例6、(2010江苏卷9).如图所示,在匀强磁场中附加另一匀强磁场,附加磁场位于图中阴影区域,附加磁场区域的对称轴OO’与SS’垂直。a、b、c三个质子先后从S点沿垂直于磁场的方向射入磁场,它们的速度大小相等,b的速度方向与SS’垂直,a、c的速度方向与b的速度方向间的夹角分别为α、β,且α>β。三个质子经过附加磁场区域后能达到同一点S’,则下列说法中正确的有()(A)三个质子从S运动到S’的时间相等(B)三个质子在附加磁场以外区域运动时,运动轨迹的圆心均在OO’轴上(C)若撤去附加磁场,a到达SS’连线上的位置距S点最近(D)附加磁场方向与原磁场方向相同CD例7、如图所示,在相互垂直的水平方向的匀强电场(E已知)和匀强磁场(B已知)中,有一固定的竖直绝缘杆,杆上套一个质量为m、电量为q的小球,它们之间的摩擦因数为μ,现由静止释放小球,试分析小球运动的加速度和速度的变更状况,并求出最大速度vm。(mg>μqE)EB[解析]

设带正电,分析小球受力如图:mgNqvBqEf小球向下加速运动,v增大,qvB增大,N减小,f减小,a增大,当qvB=qE时,N=0,f=0a=g最大mgqvBqEv再增大,qvB增大,N反向增大,f增大,a减小,mgNqvBfqE当f=mg时,a=0v达到最大值。μN=μ(qvmB-qE)=mgvm=mg/μqB+E/B所以,a先增大后减小最终为0,v始终增大到某一最大值。带负电的状况同样分析,只要将左右的力对调即可。练习.如图所示,在一根足够长的竖直绝缘杆上,套着一个质量为m、带电量为-q的小球,球与杆之间的动摩擦因数为μ.场强为E的匀强电场和磁感应强度为B的匀强磁场方向如图所示,小球由静止起先下落.求:(1)小球起先下落时的加速度;(2)小球的速度多大时,有最大加速度,它们的值是多少?(3)小球运动的最大速度为多少?(2)最大加速度am=g(3)最大速度vm=mg/μqB+E/B答:(1)起先时的加速度a=g-μqE/mEBEBθ例8.如图所示电磁场中,一质量m、电量q带正电荷的小球静止在倾角θ、足够长的绝缘光滑斜面的顶端时,对斜面压力恰为零.若快速把电场方向改为竖直向下,则小球能在斜面上滑行多远?所用时间是多少?解:起先静止,mg=qE电场反向后,受力如图:小球沿斜面方向受恒力作匀加速运动a=2gsinθ速度增大,洛仑兹力增大,当小球运动到点P时,f=qvB=2mgcosθ,N=0,小球将离开斜面。V=2mgcosθ/qBS=v2/2a=m2gcos2θ/q2B2sinθt=v/a=mcotθ/qBvqEmgNf例9、如图所示,在xOy平面上内,x轴上方有磁感应强度为B,方向垂直xOy平面指向纸里的匀强磁场,x轴下方有场强为E、方向沿y轴负方向的匀强磁场,现将一质量为m,电量为e的电子,从y轴上M点由静止释放,要求电子进入磁场运动可通过x轴上的P点,P点到原点的距离为L,(1)M点到原点O的距离y要满足的条件.(2)电子从M点运动到P点所用的时间.(1)(2)yExBO·Pe-M解答:粒子运动轨迹如图所示:一、磁流体发电例10、如图示为试验用磁流体发电机,两极板间距d=20cm,磁场的磁感应强度B=5T,若接入“200V、100W”的灯泡,恰好正常发光,不计发电机的内阻,求:(1)等离子体的流速是多少?(2)若等离子体均为一价离子,每秒钟有多少什么性质的离子打在下极板上?解:磁流体发电机的原理——正离子在磁场中受到洛仑兹力向下偏转,负离子在磁场中受到洛仑兹力向上偏转,上下两板分别积聚负电荷和正电荷。两板间产生向下的电场,正负离子同时受到电场力和洛仑兹力的作用,当两力平衡时,达到动

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论