2023年高考物理(考点解读+命题热点突破)专题05功功率动能定理_第1页
2023年高考物理(考点解读+命题热点突破)专题05功功率动能定理_第2页
2023年高考物理(考点解读+命题热点突破)专题05功功率动能定理_第3页
2023年高考物理(考点解读+命题热点突破)专题05功功率动能定理_第4页
2023年高考物理(考点解读+命题热点突破)专题05功功率动能定理_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

PAGEPAGE1专题05功功率动能定理【考向解读】预测2022年高考命题特点:①功和功率的计算.②利用动能定理分析简单问题.③对动能变化、重力势能变化、弹性势能变化的分析.④对机械能守恒条件的理解及机械能守恒定律的简单应用.交汇命题的主要考点有:①结合v-t、F-t等图象综合考查多过程的功和功率的计算.②结合应用动能定理、机械能守恒定律和能量守恒定律,结合动力学方法解决多运动过程问题.【命题热点突破一】功和功率的计算在历年的高考中,很少出现简单、单独考查功和功率的计算,一般将其放在与功能关系、物体的运动等综合问题中一起考查,并且对于功和功率的考查一般以选择题形式出现,题目难度以中档题为主.例1.一物体静止在粗糙水平地面上.现用一大小为F1的水平拉力拉动物体,经过一段时间后其速度变为v.假设将水平拉力的大小改为F2,物体从静止开始经过同样的时间后速度变为2v.对于上述两个过程,用WF1、WF2分别表示拉力F1、F2所做的功,Wf1、Wf2分别表示前后两次克服摩擦力所做的功,那么()A.WF2>4WF1,Wf2>2Wf1B.WF2>4WF1,Wf2=2Wf1C.WF2<4WF1,Wf2=2Wf1D.WF2<4WF1,Wf2<2Wf1【答案】C【感悟提升】1.功的计算(1)恒力做功的计算公式:W=Flcosα;(2)当F为变力时,用动能定理W=ΔEk或功能关系求功.所求得的功是该过程中外力对物体(或系统)做的总功(或者说是合力对物体做的功);(3)利用F-l图象曲线下的面积求功;(4)利用W=Pt计算.2.功率(1)功率定义式:P=eq\f(W,t).所求功率是时间t内的平均功率;(2)功率计算式:P=Fvcosα.其中α是力与速度间的夹角.假设v为瞬时速度,那么P为F在该时刻的瞬时功率;假设v为平均速度,那么P为F在该段位移内的平均功率.【变式探究】如下图,水平传送带以v=2m/s的速度匀速前进,上方漏斗中以每秒50kg的速度把煤粉竖直抖落到传送带上,然后一起随传送带运动.如果要使传送带保持原来的速度匀速前进,那么传送带的电动机应增加的功率为()A.100W B.200WC.500W D.无法确定【答案】B【命题热点突破二】对动能定理应用的考查命题规律:该知识点是近几年高考的重点,也是高考的热点,题型既有选择题,也有计算题.考查的频率很高,分析近几年的考题,命题有以下规律:(1)圆周运动与平衡知识的综合题.(2)考查圆周运动的临界和极值问题.例2.【2022·浙江卷】如图1­4所示为一滑草场,某条滑道由上下两段高均为h,与水平面倾角分别为45°和37°的滑道组成,滑草车与草地之间的动摩擦因数为μ.质量为m的载人滑草车从坡顶由静止开始自由下滑,经过上、下两段滑道后,最后恰好静止于滑道的底端(不计滑草车在两段滑道交接处的能量损失,sin37°=0.6,cos37°=0.8).那么()图1­4A.动摩擦因数μ=eq\f(6,7)B.载人滑草车最大速度为eq\r(\f(2gh,7))C.载人滑草车克服摩擦力做功为mghD.载人滑草车在下段滑道上的加速度大小为eq\f(3,5)g【感悟提升】动能定理应用的根本步骤(1)选取研究对象,明确并分析运动过程.(2)分析受力及各力做功的情况,受哪些力?每个力是否做功?在哪段位移过程中做功?正功?负功?做多少功?求出代数和.(3)明确过程初、末状态的动能Ek1及Ek2.(4)列方程W=Ek2-Ek1,必要时注意分析题目的潜在条件,补充方程进行求解.【变式探究】一物块沿倾角为θ的斜坡向上滑动.当物块的初速度为v时,上升的最大高度为H,如下图;当物块的初速度为eq\f(v,2)时,上升的最大高度记为h.重力加速度大小为g.物块与斜坡间的动摩擦因数和h分别为()A.tanθ和eq\f(H,2)B.eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(v2,2gH)-1))tanθ和eq\f(H,2)C.tanθ和eq\f(H,4)D.eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(v2,2gH)-1))tanθ和eq\f(H,4)【答案】D【命题热点突破三】机车启动问题机车启动问题在最近3年高考中出现的频率并不高,但该局部内容比拟综合,在考查功率的同时也考查功能关系和运动过程的分析以及匀变速直线运动规律的运用,预计可能在2022年的高考中出现,题型为选择题或计算题都有可能.例3、【2022·天津卷】我国高铁技术处于世界领先水平,和谐号动车组是由动车和拖车编组而成,提供动力的车厢叫动车,不提供动力的车厢叫拖车.假设动车组各车厢质量均相等,动车的额定功率都相同,动车组在水平直轨道上运行过程中阻力与车重成正比.某列动车组由8节车厢组成,其中第1、5节车厢为动车,其余为拖车,那么该动车组()图1­A.启动时乘客受到车厢作用力的方向与车运动的方向相反B.做匀加速运动时,第5、6节与第6、7节车厢间的作用力之比为3∶2C.进站时从关闭发动机到停下来滑行的距离与关闭发动机时的速度成正比D.与改为4节动车带4节拖车的动车组最大速度之比为1∶2【变式探究】为登月探测月球,上海航天技术研究院研制了“月球车〞,如图甲所示,某探究性学习小组对“月球车〞的性能进行了研究.他们让“月球车〞在水平地面上由静止开始运动,并将“月球车〞运动的全过程记录下来,通过数据处理得到如图乙所示的v-t图象,0~t1段为过原点的倾斜直线;t1~10s内“月球车〞牵引力的功率保持不变,且P=1.2kW,7~10s段为平行于横轴的直线;在10s末停止遥控,让“月球车〞自由滑行,“月球车〞质量m=100kg,整个过程中“月球车〞受到的阻力f大小不变.(1)求“月球车〞所受阻力f的大小和“月球车〞匀速运动时的速度大小;(2)求“月球车〞在加速运动过程中的总位移s;(3)求0~13s内牵引力所做的总功.解析:(1)在10s末撤去牵引力后,“月球车〞只在阻力f作用下做匀减速运动,由图象可得a=eq\f(v1,3)由牛顿第二定律得,其阻力f=ma7~10s内“月球车〞匀速运动,设牵引力为F,那么F=f由P=Fv1可得“月球车〞匀速运动时的速度v1=P/F=P/f联立解得v1=6m/s,a=2m/s2,f=200N.(2)“月球车〞的加速运动过程可以分为0~t1时间内的匀加速运动和t1~7s时间内的变加速运动两个阶段,t1时功率为P=1.2kW,速度为vt=3m/s由P=F1vt可得此时牵引力为F1=P/vt=400N由牛顿第二定律:F1-f=ma1,解得0~t1时间内的加速度大小为a1=(F1-f)/m=2m/s2匀加速运动的时间t1=eq\f(vt,a1)=1.5s匀加速运动的位移s1=eq\f(1,2)a1teq\o\al(2,1)=2.25m在0~7s内由动能定理可得F1s1+P(7-t1)-fs=eq\f(1,2)mveq\o\al(2,1)-eq\f(1,2)mveq\o\al(2,0)代入数据解得“月球车〞在加速运动过程中的总位移s=28.5m.答案:见解析【易错提醒】机车匀加速启动时,匀加速阶段的最大速度小于匀速运动的最大速度,前者用牛顿第二定律列式求解,后者用平衡知识求解.匀加速阶段牵引力是恒力,牵引力做功用W=Fl求解.以额定功率启动时,牵引力是变力,牵引力做功用W=Pt求解.)【高考真题解读】1.【2022·全国卷Ⅱ】两实心小球甲和乙由同一种材料制成,甲球质量大于乙球质量.两球在空气中由静止下落,假设它们运动时受到的阻力与球的半径成正比,与球的速率无关.假设它们下落相同的距离,那么()A.甲球用的时间比乙球长B.甲球末速度的大小大于乙球末速度的大小C.甲球加速度的大小小于乙球加速度的大小D.甲球克服阻力做的功大于乙球克服阻力做的功【答案】BD【解析】设f=kR,那么由牛顿第二定律得F合=mg-f=ma,而m=eq\f(4,3)πR3·ρ,故a=g-eq\f(k,\f(4,3)πR2·ρ),由m甲>m乙、ρ甲=ρ乙可知a甲>a乙,故C错误;因甲、乙位移相同,由v2=2ax可知,v甲>v乙,B正确;由x=eq\f(1,2)at2可知,t甲<t乙,A错误;由功的定义可知,W克服=f·x,又f甲>f乙,那么W甲克服>W乙克服,D正确.2.【2022·天津卷】我国高铁技术处于世界领先水平,和谐号动车组是由动车和拖车编组而成,提供动力的车厢叫动车,不提供动力的车厢叫拖车.假设动车组各车厢质量均相等,动车的额定功率都相同,动车组在水平直轨道上运行过程中阻力与车重成正比.某列动车组由8节车厢组成,其中第1、5节车厢为动车,其余为拖车,那么该动车组()图1­A.启动时乘客受到车厢作用力的方向与车运动的方向相反B.做匀加速运动时,第5、6节与第6、7节车厢间的作用力之比为3∶2C.进站时从关闭发动机到停下来滑行的距离与关闭发动机时的速度成正比D.与改为4节动车带4节拖车的动车组最大速度之比为1∶23.【2022·全国卷Ⅰ】如图1­,一轻弹簧原长为2R,其一端固定在倾角为37°的固定直轨道AC的底端A处,另一端位于直轨道上B处,弹簧处于自然状态,直轨道与一半径为eq\f(5,6)R的光滑圆弧轨道相切于C点,AC=7R,A、B、C、D均在同一竖直平面内.质量为m的小物块P自C点由静止开始下滑,最低到达E点(未画出),随后P沿轨道被弹回,最高到达F点,AF=4R,P与直轨道间的动摩擦因数μ=eq\f(1,4),重力加速度大小为g.(取sin37°=eq\f(3,5),cos37°=eq\f(4,5))(1)求P第一次运动到B点时速度的大小.(2)求P运动到E点时弹簧的弹性势能.(3)改变物块P的质量,将P推至E点,从静止开始释放.P自圆弧轨道的最高点D处水平飞出后,恰好通过G点.G点在C点左下方,与C点水平相距eq\f(7,2)R、竖直相距R,求P运动到D点时速度的大小和改变后P的质量.图1­【答案】(1)2eq\r(gR)(2)eq\f(12,5)mgR(3)eq\f(3,5)eq\r(5gR)eq\f(1,3)m【解析】(1)根据题意知,B、C之间的距离l为l=7R-2R①设P到达B点时的速度为vB,由动能定理得mglsinθ-μmglcosθ=eq\f(1,2)mveq\o\al(2,B)②式中θ=37°,联立①②式并由题给条件得vB=2eq\r(gR)③P到达E点后反弹,从E点运动到F点的过程中,由动能定理有Ep-mgl1sinθ-μmgl1cosθ=0⑥联立③④⑤⑥式并由题给条件得x=R⑦Ep=eq\f(12,5)mgR⑧(3)设改变后P的质量为m1,D点与G点的水平距离x1和竖直距离y1分别为x1=eq\f(7,2)R-eq\f(5,6)Rsinθ⑨y1=R+eq\f(5,6)R+eq\f(5,6)Rcosθ⑩式中,已应用了过C点的圆轨道半径与竖直方向夹角仍为θ的事实.设P在D点的速度为vD,由D点运动到G点的时间为t.由平抛物运动公式有y1=eq\f(1,2)gt2⑪x1=vDt⑫联立⑨⑩⑪⑫式得vD=eq\f(3,5)eq\r(5gR)⑬设P在C点速度的大小为vC,在P由C运动到D的过程中机械能守恒,有eq\f(1,2)m1veq\o\al(2,C)=eq\f(1,2)m1veq\o\al(2,D)+m1geq\b\lc\(\rc\)(\a\vs4\al\co1(\f(5,6)R+\f(5,6)Rcosθ))⑭P由E点运动到C点的过程中,同理,由动能定理有Ep-m1g(x+5R)sinθ-μm1g(x+5R)cosθ=eq\f(1,2)m1veq\o\al(2,C)⑮联立⑦⑧⑬⑭⑮式得m1=eq\f(1,3)m⑯4.【2022·全国卷Ⅱ】小球P和Q用不可伸长的轻绳悬挂在天花板上,P球的质量大于Q球的质量,悬挂P球的绳比悬挂Q球的绳短.将两球拉起,使两绳均被水平拉直,如图1­所示.将两球由静止释放,在各自轨迹的最低点()图1­A.P球的速度一定大于Q球的速度B.P球的动能一定小于Q球的动能C.P球所受绳的拉力一定大于Q球所受绳的拉力D.P球的向心加速度一定小于Q球的向心加速度【答案】C【解析】从释放到最低点过程中,由动能定理得mgl=eq\f(1,2)mv2-0,可得v=eq\r(2gL),因lP<lQ,那么vP<vQ,应选项A错误;由EkQ=mQglQ,EkP=mPglP,而mP>mQ,故两球动能大小无法比拟,选项B错误;在最低点对两球进行受力分析,根据牛顿第二定律及向心力公式可知T-mg=meq\f(v2,l)=man,得T=3mg,an=2g,那么TP>TQ,aP=aQ,C正确,D错误.5.【2022·全国卷Ⅲ】一质点做速度逐渐增大的匀加速直线运动,在时间间隔t内位移为s,动能变为原来的9倍.该质点的加速度为()A.eq\f(s,t2)B.eq\f(3s,2t2)C.eq\f(4s,t2)D.eq\f(8s,t2)【答案】A6.【2022·全国卷Ⅲ】如下图,一固定容器的内壁是半径为R的半球面;在半球面水平直径的一端有一质量为m的质点P.它在容器内壁由静止下滑到最低点的过程中,克服摩擦力做的功为W.重力加速度大小为g.设质点P在最低点时,向心加速度的大小为a,容器对它的支持力大小为N,那么()图1­A.a=eq\f(2〔mgR-W〕,mR)B.a=eq\f(2mgR-W,mR)C.N=eq\f(3mgR-2W,R)D.N=eq\f(2〔mgR-W〕,R)【答案】AC【解析】质点P下滑到底端的过程,由动能定理得mgR-W=eq\f(1,2)mv2-0,可得v2=eq\f(2〔mgR-W〕,m),所以a=eq\f(v2,R)=eq\f(2〔mgR-W〕,mR),A正确,B错误;在最低点,由牛顿第二定律得N-mg=meq\f(v2,R),故N=mg+meq\f(v2,R)=mg+eq\f(m,R)·eq\f(2〔mgR-W〕,m)=eq\f(3mgR-2W,R),C正确,D错误.7.【2022·天津卷】我国将于2022年举办冬奥会,跳台滑雪是其中最具欣赏性的工程之一.如图1­所示,质量m=60kg的运发动从长直助滑道AB的A处由静止开始以加速度a=3.6m/s2匀加速滑下,到达助滑道末端B时速度vB=24m/s,A与B的竖直高度差H=48m.为了改变运发动的运动方向,在助滑道与起跳台之间用一段弯曲滑道衔接,其中最低点C处附近是一段以O为圆心的圆弧.助滑道末端B与滑道最低点C的高度差h=5m,运发动在B、C间运动时阻力做功W=-1530J,g取10m/s2.图1­(1)求运发动在AB段下滑时受到阻力Ff的大小;(2)假设运发动能够承受的最大压力为其所受重力的6倍,那么C点所在圆弧的半径R至少应为多大?【答案】(1)144N(2)12.5m【解析】(1)运发动在AB上做初速度为零的匀加速运动,设AB的长度为x,那么有veq\o\al(2,B)=2ax①由牛顿第二定律有mgeq\f(H,x)-Ff=ma②联立①②式,代入数据解得Ff=144N③8.【2022·四川卷】韩晓鹏是我国首位在冬奥会雪上工程夺冠的运发动.他在一次自由式滑雪空中技巧比赛中沿“助滑区〞保持同一姿态下滑了一段距离,重力对他做功1900J,他克服阻力做功100J.韩晓鹏在此过程中()A.动能增加了1900JB.动能增加了2000JC.重力势能减小了1900JD.重力势能减小了2000J【答案】C【解析】由题可得,重力做功1900J,那么重力势能减少1900J,可得C正确,D错误.由动能定理:WG-Wf=ΔEk可得动能增加1800J,那么A、B错误.9.【2022·浙江卷】如图1­4所示为一滑草场,某条滑道由上下两段高均为h,与水平面倾角分别为45°和37°的滑道组成,滑草车与草地之间的动摩擦因数为μ.质量为m的载人滑草车从坡顶由静止开始自由下滑,经过上、下两段滑道后,最后恰好静止于滑道的底端(不计滑草车在两段滑道交接处的能量损失,sin37°=0.6,cos37°=0.8).那么()图1­4A.动摩擦因数μ=eq\f(6,7)B.载人滑草车最大速度为eq\r(\f(2gh,7))C.载人滑草车克服摩擦力做功为mghD.载人滑草车在下段滑道上的加速度大小为eq\f(3,5)g10.【2022·全国卷Ⅱ】如图1­,小球套在光滑的竖直杆上,轻弹簧一端固定于O点,另一端与小球相连.现将小球从M点由静止释放,它在下降的过程中经过了N点.在M、N两点处,弹簧对小球的弹力大小相等,且∠ONM<∠OMN<eq\f(π,2).在小球从M点运动到N点的过程中()图1­A.弹力对小球先做正功后做负功B.有两个时刻小球的加速度等于重力加速度C.弹簧长度最短时,弹力对小球做功的功率为零D.小球到达N点时的动能等于其在M、N两点的重力势能差11.如图1­所示,倾角为α的斜面A被固定在水平面上,细线的一端固定于墙面,另一端跨过斜面顶端的小滑轮与物块B相连,B静止在斜面上.滑轮左侧的细线水平,右侧的细线与斜面平行.A、B的质量均为m.撤去固定A的装置后,A、B均做直线运动.不计一切摩擦,重力加速度为g.求:图1­(1)A固定不动时,A对B支持力的大小N;(2)A滑动的位移为x时,B的位移大小s;(3)A滑动的位移为x时的速度大小vA.【答案】(1)mgcosα(2)eq\r(2〔1-cosα〕·x)(3)eq\r(\f(2gxsinα,3-2cosα))【解析】(1)支持力的大小N=mgcosα12.【2022·全国卷Ⅱ】轻质弹簧原长为2l,将弹簧竖直放置在地面上,在其顶端将一质量为5m的物体由静止释放,当弹簧被压缩到最短时,弹簧长度为l.现将该弹簧水平放置,一端固定在A点,另一端与物块P接触但不连接.AB是长度为5l的水平轨道,B端与半径为l的光滑半圆轨道BCD相切,半圆的直径BD竖直,如下图.物块P与AB间的动摩擦因数μ=0.5.用外力推动物块P,将弹簧压缩至长度l,然后放开,P(1)假设P的质量为m,求P到达B点时速度的大小,以及它离开圆轨道后落回到AB上的位置与B点间的距离;(2)假设P能滑上圆轨道,且仍能沿圆轨道滑下,求P的质量的取值范围.图1­【答案】(1)eq\r(6gl)2eq\r(2)l(2)eq\f(5,3)m≤M<eq\f(5,2)m假设P能沿圆轨道运动到D点,其到达D点时的向心力不能小于重力,即P此时的速度大小v应满足eq\f(mv2,l)-mg≥0④设P滑到D点时的速度为vD,由机械能守恒定律得eq\f(1,2)mveq\o\al(2,B)=eq\f(1,2)mveq\o\al(2,D)+mg·2l⑤联立③⑤式得vD=eq\r(2gl)⑥vD满足④式要求,故P能运动到D点,并从D点以速度vD水平射出.设P落回到轨道AB所需的时间为t,由运动学公式得2l=eq\f(1,2)gt2⑦P落回到AB上的位置与B点之间的距离为s=vDt⑧联立⑥⑦⑧式得s=2eq\r(2)l⑨(2)为使P能滑上圆轨道,它到达B点时的速度不能小于零.由①②式可知5mgl>μMg·4要使P仍能沿圆轨道滑回,P在圆轨道的上升高度不能超过半圆轨道的中点C.由机械能守恒定律有eq\f(1,2)Mveq\o\al(2,B)≤Mgl⑪联立①②⑩⑪式得eq\f(5,3)m≤M<eq\f(5,2)m⑫1.(2022·高考全国卷Ⅱ,T17,6分)一汽车在平直公路上行驶.从某时刻开始计时,发动机的功率P随时间t的变化如下图.假定汽车所受阻力的大小f恒定不变.以下描述该汽车的速度v随时间t变化的图线中,可能正确的选项是()2.(2022·高考全国卷Ⅰ,T17,6分)如图,一半径为R、粗糙程度处处相同的半圆形轨道竖直固定放置,直径POQ水平.一质量为m的质点自P点上方高度R处由静止开始下落,恰好从P点进入轨道.质点滑到轨道最低点N时,对轨道的压力为4mg,g为重力加速度的大小.用W表示质点从P点运动到N点的过程中克服摩擦力所做的功.那么()A.W=eq\f(1,2)mgR,质点恰好可以到达Q点B.W>eq\f(1,2)mgR,质点不能到达Q点C.W=eq\f(1,2)mgR,质点到达Q点后,继续上升一段距离D.W<eq\f(1,2)mgR,质点到达Q点后,继续上升一段距离3.(2022·海南单科,3,3分)假设摩托艇受到的阻力的大小正比于它的速率.如果摩托艇发动机的输出功率变为原来的2倍,那么摩托艇的最大速率变为原来的() A.4倍 B.2倍 C.eq\r(3)倍 D.eq\r(2)倍 解析设f=kv,当阻力等于牵引力时,速度最大,输出功率变化前,有P=Fv=fv=kv·v=kv2,变化后有2P=F′v′=kv′·v′=kv′2,联立解得v′=eq\r(2) v, D正确. 答案D4.(2022·重庆理综,2,6分)某车以相同的功率在两种不同的水平路面上行驶,受到的阻力分别为车重的k1和k2倍,最大速率分别为v1和v2,那么() A.v2=k1v1 B.v2=eq\f(k1,k2)v1 C.v2=eq\f(k2,k1)v1 D.v2=k2v1 解析汽车以最大速率行驶时,牵引力F等于阻力f,即F=f=kmg.由P= k1mgv1及P=k2mgv2,得v2=eq\f(k1,k2)v1,故B正确. 答案B4.(2022·新课标全国Ⅱ,16,6分)一物体静止在粗糙水平地面上.现用一大小为F1的水平拉力拉动物体,经过一段时间后其速度变为v.假设将水平拉力的大小改为F2,物体从静止开始经过同样的时间后速度变为2v.对于上述两个过程,用WF1、WF2分别表示拉力F1、F2所做的功,Wf1、Wf2分别表示前 后两次克服摩擦力所做的功,那么() A.WF2>4WF1,Wf2>2Wf1B.WF2>4WF1,Wf2=2Wf1 C.WF2<4WF1,Wf2=2Wf1D.WF2<4WF1,Wf2<2Wf1 解析WF1=eq\f(1,2)mv2+μmg·eq\f(v,2)t,WF2=eq\f(1,2)m·4v2+μmgeq\f(2v,2)t,故WF2<4WF1;Wf1= μmg·eq\f(v,2)t,Wf2=μmg·eq\f(2v,2)t,故Wf2=2Wf1,C正确. 答案C5.(2022·浙江理综,18,6分)我国科学家正在研制航母舰载机使用的电磁弹射器.舰载机总质量为3.0×104kg,设起飞过程中发动机的推力恒为1.0×105N;弹射器有效作用长度为100m,推力恒定.要求舰载机在水平弹射结束时速度大小到达80m/s.弹射过程中舰载机所受总推力为弹射 器和发动机推力之和,假设所受阻力为总推力的20%,那么() A.弹射器的推力大小为1.1×106N B.弹射器对舰载机所做的功为1.1×108J C.弹射器对舰载机做功的平均功率为8.8×107W D.舰载机在弹射过程中的加速度大小为32m/s2 答案ABD6.(2022·海南单科,4,3分)如图,一半径为R的半圆形轨道竖直固定放置,轨道两端等高,质量为m的质点自轨道端点P由静止开始滑下,滑到最低点Q时,对轨道的正压力为2mg,重力加速度大小为g.质点自P滑到Q的过程中,克服摩擦力所做的功为() A.eq\f(1,4)mgR B.eq\f(1,3)mgR C.eq\f(1,2)mgR D.eq\f(π,4)mgR 解析在Q点质点受到竖直向下的重力和竖直向上的支持力,两力的合力充当向心力,所以有FN-mg=meq\f(v2,R),FN=2mg,联立解得v=eq\r(gR),下滑过程中,根据动能定理可得mgR-Wf=eq\f(1,2)mv2,解得Wf=eq\f(1,2)mgR,所以克服摩擦力做功eq\f(1,2) mgR,C正确. 答案C7.(2022·大纲全国,19,6分)一物块沿倾角为θ的斜坡向上滑动.当物块的初速度为v时,上升的最大高度为H,如下图;当物块的初速度为eq\f(v,2) 时,上升的最大高度记为h.重力加速度大小为g.物块与斜坡间的动摩擦因数和h分别为() A.tanθ和eq\f(H,2) B.(eq\f(v2,2gH)-1)tanθ和eq\f(H,2) C.tanθ和eq\f(H,4) D.(eq\f(v2,2gH)-1)tanθ和eq\f(H,4) 答案D8.(2022·浙江理综,23,16分)如下图,用一块长L1=1.0m的木板在墙和桌面间架设斜面,桌子高H=0.8m,长L2=1.5m.斜面与水平桌面的倾角θ可在0~60°间调节后固定.将质量m=0.2kg的小物块从斜面顶端静止释放,物块与斜面间的动摩擦因数μ1=0.05,物块与桌面间的动摩擦因数为μ2,忽略物块在斜面与桌面交接处的能量损失(重力加速度取g=10m/s2;最大静摩擦力等于滑动摩擦力) (1)求θ角增大到多少时,物块能从斜面开始下滑;(用正切值表示) (2)当θ角增大到37°时,物块恰能停在桌面边缘,求物块与桌面间的动摩擦因数μ2;(sin37°=0.6,cos37°=0.8) (3)继续增大θ角,发现θ=53°时物块落地点与墙面的距离最大,求此最大距离xm. 解析(1)要使小物块能够下滑必须满足 mgsinθ>μ1mgcosθ① 解得tanθ>0.05② (2)物块从斜面顶端下滑到停在桌面边缘过程中物块克服摩擦力做功Wf= μ1mgL1cosθ+μ2mg(L2-L1cosθ)③ 全过程由动能定理得:mgL1sinθ-Wf=0④ 代入数据解得μ2=0.8⑤9.(2022·海南单科,14,13分)如图,位于竖直平面内的光滑轨道由四分之一圆弧ab和抛物线bc组成,圆弧半径Oa水平,b点为抛物线顶点.已 知h=2m,s=eq\r(2)m.取重力加速度大小g=10m/s2. (1)一小环套在轨道上从a点由静止滑下,当其在bc段轨道运动时,与轨道之间无相互作用力,求圆弧轨道的半径; (2)假设环从b点由静止因微小扰动而开始滑下,求环到达c点时速度的水平分量的大小. 解析(1)一小环在bc段轨道运动时,与轨道之间无相互作用力,那么说明下落到b点时的速度水平,小环做平抛运动的轨迹与轨道bc重合,故有s=v0t① h=eq\f(1,2)gt2 ② 在ab滑落过程中,根据动能定理可得mgR=eq\f(1,2)mveq\o\al(2,b)③ 联立三式可得R=eq\f(s2,4h)=0.25m10.(2022·山东理综,23,18分)如图甲所示,物块与质量为m的小球通过不可伸长的轻质细绳跨过两等高定滑轮连接.物块置于左侧滑轮正下方的外表水平的压力传感装置上,小球与右侧滑轮的距离为l.开始时物块和 小球均静止,将此时传感装置的示数记为初始值.现给小球施加一始终垂直于l段细绳的力、将小球缓慢拉起至细绳与竖直方向成60°角,如图乙所示,此时传感装置的示数为初始值的1.25倍;再将小球由静止释放,当运动至最低位置时,传感装置的示数为初始值的0.6倍.不计滑轮的大小和摩擦,重力 加速度的大小为g.求: (1)物块的质量; (2)从释放到运动至最低位置的过程中,小球克服空气阻力所做的功. 解析(1)设开始时细绳的拉力大小为T1,传感装置的初始值为F1,物块质量为M,由平衡条件得 对小球,T1=mg① 对物块,F1+T1=Mg② 当细绳与竖直方向的夹角为60°时,设细绳的拉力大小为T2,传感装置的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论