




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、例题例1:有一容积为2〃/的气罐(内有空气,参数为lbar,20-C)与表压力为17bar的20C的压缩空气管道连接,缓慢充气达到平衡(定温)。求:L此时罐中空气的质量2.充气过程中气罐散出的热量3.不可逆充气引起的嫡产(大气压Ibar,20X3)…pvPV解:充气前P]=lbarT.=20C质量叫,充气后p,=p°=17bar=T,=20C质量机.①〃?.=—=—=—=—■RgT\RgT[②热力学第一定律:Q="+],产416%)+%.=An=〃?-/=吗町-加必; L(jd叫一e,叫)=一god叫=/为=一〃°(团?一叫);W〃“二一叫IPo%"一匕"(叫一网);得:Q=/n2u2-/n1w1-w0(/n2一叫)-VQP0(m2-m1)=m2u2-miul-hQ(tn2-mJ由缓慢充气知为定温过程,〃广〃广C%1; ho=C,Jo;(1-八丁0)=(Pz-Pj)VQ=—〃7jC/7;.(〃乙—mJCPqT0=(/m2-/w1(1-八丁0)=(Pz-Pj)V③A5=S,+Sg+[)(S/叫-5/叱)=叫S?叫S];Sf=y-;1(s/〃「邑4〃尸s加(叫-㈣);Sg=(〃%S2~m1S1)-S加(/W2-/«1)—=ni2(S2-Sin)+阳](Sin-Sl)~:I。 ^0rrf0S、-S[=CpIn上-RIn匹:(AS'二九(QIn乌-H,In匹)+叫(cgZL-&必生)-2;E,=715..Tin8Pe1 7;ATq s例2:Imol理想气体。,,在(T,V)状态下,5,口,绝热自由膨胀后体积增加到2V,此时S.,C…求①(AS)。:,今②若试问全部小分子都同时集中在原子体积V中的概率解:①—=〃R加今=〃R加2=5.763//K(n=lm0|),AS=Kln¥nRln2=Kln2'w,;由=2叫=103。”
1 .j②。小」一二1。78刈。一可以看出逆过程是可能的,但是概率很小,在宏观上仍表现为方向性,故过程可逆(或燧增原理)完全是统计的量与热力学观点不同。例3(1):500kg温度为20c水,用电加热器加热到60C,求这一过程造成的功损和可用能的损失,不考虑散热损失,大气温度20C,水的Cp=4.187kj/(kg*K)解:4.Q=(U—L(r-r0)ToIn]=5241.4kJQ=mC(T-T)=83740KJ:E,=Q-o=78498.6KJ:P u L X・QTWL==mCp(T,o)=83740KJ:△S孤二WL==mCp(T,o)=83740KJ:例3(2)压力为l.2Mpa,温度为320K的压缩空气,从压气机输出,由于管道阀门的阻力和散热,压力降为0.8Mpa,温度降为298K,其流量为0.5KJ/S。求每小时损失的可用能。(按定比热理想气体计算,大气温度2(TC,压力为O.IMpa)解:-4,)=qm[(儿-生)T P-TQ(SrS2)]=(0.5*3600)Kg/h*[1.005KJ/(kg*K)*(320-298)-293.15*[(C,111—-Rglll—)]=63451KJ/KT、 P、• • • QAS=AS大气• • • QAS=AS大气+AS空气=%”(竿1。TP)(Cp。111--Rgbi—)=q)n•*,一"£%"「7。)=216.446KJ/K*h;El=Tq(AS)=293.15*216.446例3(3):有一合用压缩空气驱动的小型车,已知压缩空气罐的容积为0・2压力为15Mpa(表压),问在平均功率为4Ps的情况下车子最多能行驶多长时间,用完这罐压缩空气最终造成的炳产为若干?已知大气状况为O.IMpa,20cT P RgTRpTTOC\o"1-5"\h\z解:ex,u=(u-/)-”(S-Sj,)+pQ(V-Vo)=CV(T-Tq)-To(Cphi--Rglll—)+p()(— ——)1。 Fqyp 1 1空气看成理想气体T=T°,得:QjRgT。In—+Rg7;Po( )=338.67KJ/kgPq PP。PV c 12151M= =35.88KgExu=mexu=12151kg= =4589PS*hRgT6 2" 2647.8EET=4.589/4=1.147h=l4、时9分钟S=—L=_^=12151^93.15=41.45KJ/k*T。T。例4:在水中加入甲醇,2or,不同浓度甲醇水溶液密度如下表:甲醇质量分数6(%)02040608090100密度g/cm,0.99820.96660.93450.89460.84690.82020.7850现40%甲醇,60%水的防冻液2'10-3〃7二问201喉,。松各多少?(M甲醇=32)TOC\o"1-5"\h\zn V解:豆二夕n摩尔体积匕二一,匕广力匕/%42V n32/ 二04/甲醇=0.2727,/水=0.7273;VHO=17.5cw3/mol/醉=39c/773/mol32 18(1 )—VV—M — — .Vm=^=—M=一,M=18*0.7273+0.2727*32=21.82,匕〃=23.35c〃//molnmp— . 业 37.V2000 .V=0.2727*39+0.7273*17.5=23.36c〃//moln=一= =85.58mol切 Vm23.36〃水=/水x〃=0.7273*85.58=62.24mol,nl|1RSr= *n=0.2727*85.58=23.34mol纯质:V=18.04C7773/mol=l^).9982 .=40.46C/n3/mol=32A).785匕”「〃水=18.04*62.24=1.122x10-3机3; %®=匕“/〃甲酹=40.46*23.74=9345x1()7〃/例5在298K,101325Pa下,不同巧的NaCl溶于1000c,/水(相应于水的物质的量〃产55.344mol)所成溶液体积V,从所得数据确定出V与a的关系为V={1001.38+16.62533(/22/mol)+l.7738(H2/mol)2+0.1198(/?2/mol)2cm5TOC\o"1-5"\h\zdV H- 〃匕与〃,关系:匕=(——)TPn={16.6253+2.6607(-^-)2+0.2388()}c/n3/molon2 mol mol匕与〃,关系:Vj=—(V-〃、K)={18.094-0.01603( -0.002157(-^-)2)C7〃3moi- 〃i-- mol mol
例6.对二元溶液,由Gibbs-DUhem方程和逸度定义式证明:证明:(1)定温定压G-D例6.对二元溶液,由Gibbs-DUhem方程和逸度定义式证明:/=1nxdu.+%dnxdu.+%d+=0 除(%+小)A X IBB .又d%=dG=RT[d]n£)r所以X】RT(din九)丁+X?RT(din7=0/% 八X1+X,=1;dX.=-dX.除以dx,得: XK半6)rp=-X,(半X1+X,=1;dX.=-dX.dx、9 -d八 '4(噜”产X叁牡)”1.⑵-if;hi7;=hi+hi/;hi/,=111^+111 求导可得:XS^^-)TP= P"一' dx. ,dx^X 一(3)。1=(工,a2=r2x2取对数求偏导Inq=1114+111%,\na2=liiz;+liix2,6111%、 ,0h“、 1Vina.、 1(丁)”=(可)力+工'(丁)"=(后)『卬+石结合(2)可推出(3).例7.8证明共沸溶液在相变过程中温度和压力遵守克•克方程。②证明共沸溶液的极值性质。证明:①由Gibbs-Duhem方程S1dT-VLdp+(1-)duA+x^du2=0S'dT-V1dp+(I-)duL+x\du2=0两式相减:(SJS'')dT—(P—,)即+(S—Y»%+("—上)=()半=S:1S;,满足,dTV-V-克一克方程。。在等温(V3喘)-al嘿嚷)「可得等压下g-s仅副=-片T嘿-题'可得(副=0例&7.6g某物质,溶解于1kg苯中时,在101325Pa下,其沸点从80.VC升高到80.24P,试计算溶质的相对分子量。纯苯在101325Pa时汽化潜热/;„=30.78kj/moL解:2责=提寿瑞黑心又.正於,’从而可得M2=143kg/kmo/.热力学第二定律的统计表述及其数学表达式?表述:任何一个热力学体系的宏观态都有相应的微观状态参数。,它是体系宏观态的单值函数。对于绝热封闭体系(进而推论到孤立体系),它在可逆过程中不变,在不可逆过程中变大,直至增到最大,过程停止,体系达到平衡态。数学表达式:如体系宏观状态用N1,N2,……N,V,U描述,则上述定律可用数学式表示为:Q=Q(N1,n2,……n,v,u);dQ>Oo式中〉是绝对封闭系或孤立系的不可逆过程,而=则表示可逆过程。.试写出并推导质点数目改变的均相体系的热力学基本方程组?基本方程组:dU=Tds-Pdv+; dH=Tds+Vdp+£4d〃,1=1 1=1dF=-SdT-Pdv+工四44;dG=-SdT+Vdp+£〃/几/=! i=l推导:假设体系内包含各组分物质的量为m,n2,……”,则体系状态可由T,P,m描述,依据封闭体系结果:U=U(S,V,n”%,…叫…4); H=H(S,P,n1,%,…可…nJ;F=F(T,V, …n,•…R): G=G(T,P,5,%,…q.…斗);U的全微分du=(变I +jdV+Y\—\d%I6sKI"鼠 奴加,人5g由封闭体系热力学基本方程知:[四|=7;(—j=—PI0s幻 IOV晨所以有:dU=TdS-PdV+y\—血所以有:dU=TdS-PdV+y\—血血SV巧俨i)(1)rRH1rRH1同理得:</H=TdS+VdP+£—
加ir\div:JF=-SdT-PJV+£—叫Jsv,〃/。汨)dnt;dG=—SdT+Vc/P+斗菽Ivw)dG=—SdT+Vc/P+斗菽Ivw)d%:卜面证明化学式定义式:OUI加OUI加Jsv,〃j(加)(叫v加iJsyjij(j^)°FI加%”g)因:因:d%;d%;7)SV,以尸i)得:dU=TdS-PdV+£/=1OHI6ni 汨)dnt:(1),(2)对比可(2)d%dg;即:知:Y———为7\unUsy.nj(j^i)色'l切Jsv,町g)
dU加i)sV,nj*i)同理由:F=U-TS:得:dF\uniJsy.nj(j^)dU
而;由G=H—TS;得:SV巧(加),剪,二迎、。Jsv巧(w)得证:M=图'oH而“八,V”jWi)GFl加Jsv巧伊i)cGjr..,.“1,S,V巧(户M).给出化学势的定义式及其物理意义?化学势定义式:4=孑V加/V巧俨:)物理意义:在恒温,恒压及定组分的均相体系中,加入极小量i组分物质△巴后引起的体系Gibbs能增量与阿之比(阻-0)。5,写出偏摩尔参数定义式,说明其物理意义?定义式:4=— :(广度量L的偏摩尔量);0%],“尸鸟物理意义:偏摩尔量表示温度,压力和出物质i外其他物质的量不变的情况卜.,再多组分均相系统中加入i组分无限小量所引起系统的广延参数变化量AL与的比值f°)。6、写出偏摩尔加和定理?表示恒温、恒压下,多组分均相系统的广延性质,r等于各组分的物质的量ni与其偏摩尔量'的乘积之和7、写出偏摩尔量微商的相关性公式?=0T.P.Mj微商相关性公式表明:在均相系统中,r个偏摩尔量rj(j=1,2, , r),对任一物质i的量ni的微商WTP「彼此不是完全独立的,而是符合相关性公式,其中只有r-l个是独立的TP,nk#i.写出并推导广义的Gibbs-Duhem方程?勺]dP+fXidLj=G广义的Gibbs-Duhem方程:【"儿I枕儿*1L=推导:均相体系任一广度量满足加和定律: 0(Li为偏摩尔量)。dL=£(〃也+Ltdnt)当体系微变后,有: 0 ; (1)又因L=L(T,P,%%,…斗)是状态参数,有
dL=dT+[—dP+EXM7;iHl(2)推出:_(dL\一1玩dT-dL
dPdL=dT+[—dP+EXM7;iHl(2)推出:_(dL\一1玩dT-dL
dP|分+£〃山=0;令N=£〃j(总物质的量),L:,X,吟则有:drdT-cPI(5+£^四=0(广义的Gibbs-Duhem方程)r=l.写出并推导一般形式的Gibbs・Duhem方程(关于G的)?=V;一般形式的Gibbs-Duhem方程:SdT-VdP+£Xtdpi=0:z=i=V;推导:由定义式可知,G=H-TS=U+PV-TS,则将此式带入广义的Gibbs-Duhem方程,则有:SdT-VdP+,X/d=0(一般形式的Gibbs-Duhemi=i方程)。.写出纯质的逸度及逸度系数的定义式,并说明逸度的性质?定义式:对于理想气体,d〃T=dGgr=RTd(MP)p\r实际气体:Z=一,d内.=ZRTd(lnP)T=RTcl(\nf\,:RTdGniT=RTd^f\故定义: f ,其中f为逸度,为逸度系数lun-=lP-»0pG"=Rr(ln〃+G*)f ,其中f为逸度,为逸度系数=1 P-p逸度的性质:逸度可以理解为假想压力,它与压力具有相同的量纲,表示物质的逃逸势。系统中若存在逸度差,高逸度处的物将向低质逸度方向移动。随着实际气体接近理想气体,f在数值上接近于P。当系统P->0时,逸度等于压力,即山113=1。P-M)P1L写出多元系统i组分逸度和逸度系数定义式?并说明用途?d从t=ddi=RTd(Inf,.定义式:(1),f
=1
d从t=ddi=RTd(Inf,.定义式:(1),f
=1
5XP(2) ;其中工为逸度,5X,P。二工逸度系数XtP用途:(1).可利用i组分逸度的关系式表达及计算其化学势;(2)将逸度的定义扩展到液相及固相,三相平衡时有:y L 5 人丫 八乙 人SM=M=M=>*="=",可同样描述i组分在液相,固相的逸度。(3).七是溶液中i组分的热力性质,且为强度性质,表示i组分的假想分压,数值不仅决定于状态参数,与溶液组成相关。12.何谓理想溶液?理想溶液的广延量:V,H,S,U,G,F如何计算?理想溶液:某种溶液如果在任何给定的温度和压力卜,不论溶液成分如何,每种组分的逸度均与其摩理想溶液广延量的计算:1)v= =f=l 1=1H= =理想溶液广延量的计算:1)v= =f=l 1=1H= =1=1 1=1/=1 i=lTOC\o"1-5"\h\zS=£咯=1n厂在41n%
i=l /=1 ;=1G=5G= In%1=1 1=1 1=1F=立W=立/-Hr*Jn七
i=l 1=1 /=1.写出非理想溶液活度和活度系数的定义式,并说明其用途?解:溶液中若有某种组分不满足关系,则此为非理想溶液。非理想溶液的组分可以按照£二代/°修正,(称为活度系数。令£=q/°,4即为非理想溶液中i组分的活度。人用途:①q用途:①q=yy>Ji,即同温、同压、同成分溶液,'组分逸度与理想溶液逸度之比,表征偏离理想态的程度。‘=1,理想溶液;乙<1,具有负偏差的实际溶液:,>1,具有正偏差的实际溶液。.试推导纯质和多元的简单可压缩系统的相平衡方程?解:假定纯质由夕相和夕相两相组成系统平衡时有d%=dsa+ds°=O由du=Tds-p而+%血可得小f(疝+pdv-力血),即一=*(疝夕+P*产-U&M)ds°=击(“一+P°("-U"F) =const=ir+UBViso=const=Va+VP;;n=const=if+np故dua=-dupdva=-dvp,力产=-dnp[ aB ctfids*=dua(, /+dva(勺一L)—dna(二一J)=0,iso 、T。TD' v^pCttpJ t»,从而 /一/ 1 1 1 1aB所以可得Ta=T\P=P,/=/即为纯质可压系统的相平衡方程。.试述吉布斯相律的基本内容,并举例说明?文字表述:P,V,T平衡系统的自由度等于组分数减去相数再加上2。2可以认为是来源于T,P两个度量。表达式:f=k-①+2.(f表示系统独立强度性质的数目)对单组分系统:单相区f=2;两相区k=l,中=2,f=l:;三相区k=l,中=3,f=0,二组分系统:单f=3;两f=2.给出纯质两相平衡时的克劳修斯•克拉贝隆方程?解:"/,〃=,力dua=dufi对a相小产=-S:dT+V:dp对夕相d/=-S)T+V/dp从而可得(一Sf+S0/T+(吸—V,)dp=0; (-S。+S-T+(片-V6)dp=0dp_S^-Sa 炉s」』」则克劳修斯-克拉贝隆方程:虹V^-Va,^ds=dh-vdp=dh,则 TT.给出弯曲界面气液平衡时的克劳修斯・克拉贝隆方程?
解:diF=du0,u=Ggdua=-S:dT+*d/=6*+Vfdp。打得(_S。+S6)dT+ya班a-V3=0dpa=dp。一竺dr S—Sa)dT=(Vfi-Va)dpp+ dr对球面 广;对平界面 广.何谓一阶相变,二阶相变,高阶相变?一阶相变:两相化学势的一阶偏导数开始不完全相等,即,"唱一du2duldu"唱一du2duldu2dTdpdp)t工0,此类相变称为一阶相变。二阶相变:两相化学势的以及偏导数相等,而二阶偏导数不等,即,&=(£式£=洋)「『(察-察),’0 (第-富”)700员dTdpdp,dT-dT-",沛op- 此类相变称为二阶相变。余此类推,三阶偏导数不等为三阶相变,二阶以上相变为高阶相变。19、解释“泡点”“露点”“共沸溶液”及“非共沸溶液”。泡点即对定压加热过程出现第一个气泡的临界点;此时继续加热,液体不断气化,直至剩余最后一滴液体的临界点,即露点。共沸溶液(二元):溶液加热至沸点后,整个相变过程中,气,液两相始终具有相同的成分,此则为共沸溶液。非共沸溶液:相变过程中,气,液两相成分不同,且随时间变化,则为非共沸溶液。20.化学热力学相关概念:化学反应度、反应热、热效应、定容热效应Q1与定压热效应QP间的关系,标准热效应,标准生成始、盖斯定律、始基准、燔基准、离解度、及其计算、亥姆霍兹函数判决和吉布斯函数判决、化学反应过程的一般判据、平衡常数及其计算。答:化学反应度:表示反应中每lmol主要反应物起反应的百分数,用£表示。反应热:表示反应过程中,系统与外界交换的热量。热效应:指反应过程中,系统不做自用功生成物的温度与反应物温度相同时,系统所吸收或放出的热量。标准热效应:不同T、P下热效应不同,为比较定义化学标准态,253latm下的热效应为标准热效应。培基准:化学热力学规定稳定单质在标准状态下的焰值为零。"mbPA'f+MmK3tm烟基准:稳定单质及化合物在ok时燧值为零。S”(r,P)=s,“(T°,p°)+AS离解度及其计算:指的是电解质达到平衡时,已解离的分子数和所有分子数之比。平衡稳定的亥姆雷兹自由能函数判据和吉布斯函数判据:等温等容只有体枳为外参量的封闭系统,G°<G,或(AG%pNG—G。>。==>(£G)tp=°同时(3-G)tp>0^nG).rp>0o亥姆霍兹自由能为严格极小的充足体系的稳定平衡态尸°<尸,或(")叱二尸—尸。>0==>3/)d=0同时(*尸)7”>0化学反应过程的一般判据:(玛/产==△&=-A(T,P,e)08 8 小于零为正向自动进行,等于零为平衡或可逆,大于零为逆向自动进行。化学平衡时反应物化学势与生成物化学势相等,此时反应物与生成物的浓度(或分压)之间必存在一定比例关系。平衡常数及其计算:表示一定条件卜.化学反应平衡(限度)的特征物理量。£5%=0 P,加 =0理想气体反应:8 ,平衡时 8 ,4(7,P,G=〃;(T)+RTIn% -SVX(D=RT必口电产P(P=A,B,C), b b1 ,标准平衡常数4(T)=e内O加相/诙m',J)=° "(7p,£)= (7,P)+RTIn/理想溶液反W:B 「八,,〃尸八7B△『G;(T,P)=-RTlnfl匕6Bo&(r,P)=n(令"固/液与气反应: b尸o定容热效应与定压热效应的关系:QP-Qv=^-^=(py)PK-(py)REo若参与反应的为理想气体,则:。尸一Qv=(〃pr-〃re)RT。标准生成始:标准状态下由稳定单质每生成lmol产物的反应热应称为产物的标准生成焰。盖斯定律:当反应前后物质的种类和量给定时,化学反应的热效应与中间过程无关,只取决与反应过程的初始和终了过程。二.论述题1简述最小熔产原理的内容。体系处于非平衡态的稳态时,热力学力变化调整到使燧产生速率最小,此为最小端产生原理。平衡态是焙产生为零的状态,而稳态是焙产生最小的状态。从某种意义上可以说,在非平衡态热力学中的稳态相当于经典热力学中的平衡态。最小埔产生原理的成立条件是,即体系的流-力关系处于线性范围,昂萨格倒易关系成立以及唯像系数不随时间变化。2线性不可逆过程热力学的基本假设和主要内容。局域平衡假设:体系的整体是非平衡态的,但可以将其看成是由无数个局部平衡的子系统构成,此即为局部平衡假设。即空间上,体系的局部微元在宏观上足够小可以用其中任一点的性质来代表该单元的性质;在微观上仍然包含大量粒子,能表达宏观统计的性质(如温度、压力、燧等)。时间上,微元体经过极短的dt时间即可达到平衡,且可用t+dt时刻微元体系平衡的性质来代表t时刻非平衡的性质,就是说,处于非平衡态系统的热力学量可以用局域平衡的热力学量来描述。线性不可逆热力学主要内容:1局域平衡假设,加入了非平衡态热力学函数,在平衡局域内应用经典热力学描述体系的状态工。=左JX2多元系Gibbs方程演变的端产率方程提供选择热力学流和热力学力的依据,即53唯象定律在近平衡态线性非平衡区建立了热力学流和热力学力之间的线性本构关系:Ji=LijXj4居里定律反映体系物质空间的对称性对不可逆过程的影响,给出热力学流与热力学力之间的耦合原则,从而简化了唯象方程(因为不相耦合的流与力之间的唯像系数Lij=O)5昂萨格倒易关系Lij=Lji沟通互唯象系数间的联系,表明各个倒易的不可逆过程之间的互相影响呈现出对称性,据此建立起不可逆过程宏观特性参数间的联系。3流动与传热过程的基本炳产计算公式。流动与传热过程的燃产:p(—+u—+v—+w—)=div(l)+SD+SCdtdxdydzT其中流动过程燧产(若已知速度场及温度场)「六li /仇'、,/Wv、,]du ,dud\v.Sv龄单」SD=—42(——『+(——Y+(——1+(——+——Y+(——+——)-+(—+——广T[[/dxdy&」②& &dx&dy传热过程嫡产(已知温度场分布)sc=4(^)2+(—)2+(—)2T2dx/ &J4耗散结构的特点及其热力学解释。1)不是任何涨落都能得到放大,只有适应系统动力学性质的那些涨落,才能得到系统中绝大多数微观客体的响应,从而波及整个系统,将系统推向新的有序结构形成的条件:开放系统;远离平衡态;涨落;正反馈;非线性抑制因素;(特点)2)远离平衡态热力学:外界的影响强烈,它引起系统状态的变化,已不是简单的线性关系,有它自己特有的规律,这时有可能出现自组织现象。3)非平衡的不稳定态在一个细小的扰动下,就可以引起系统状态的突变,使状态远离(b)线沿着另外两个稳定的分差(c)、(cl)发展,这成为分叉现象。分叉现象表明,系统在临界点附近的微小变化(涨落)可以从根本上改变系统的性质,这叫做突变现象。自组织总是通过某种突变过程来实现的。4c,是我存在时伴随耗散结构现象的特征,系统处于不同状态,涨落的作用可以很不同。C点附近--微观客体协同作用---客观有序宏观状态(耗散结构)。5简述互唯象系数的物理含义。1)互唯象系数为正时,其物理意义是交叉干扰效应,是逆着共筑过程的梯度方向进行,表明交叉干扰效应有利于单一可逆的共筑效应,此时共朝效应被强化了。2)当互唯象系数为负时,其物理意义是交叉干扰效应也是可以顺着梯度方向进行的,表明交叉干扰效应不利于单一可逆的共筑效应,此时共朝效应被削弱了。3)举例来说,对传热、传质相互干扰的不可逆过程来说,浓度梯度引起的扩散热也可以从低温传向
高温而顺着温度梯度方向进行传递。而温度梯度引起的热扩散可以从低浓度传向高浓度而顺着浓度梯度进行。4)交叉干扰效应到底逆着还是顺着被干扰与共短效应的梯度进行,取决于外界条件。5)交叉(干扰)效应既可以加速不可逆过程的进行,也可以滞迟或延缓不可逆过程的进行6,实际气体的状态方程具有哪些特征对比理想气体的状态方程pv=R.TVanderWaals方程RK方程Wilson方程PR方程PTVanderWaals方程RK方程Wilson方程PR方程PT方程_RT_av—bTQ:,v(y4-b)RTa
,= - v—bv(v+b)_RT_av—bv(y+Z?)+b(y—b)_RT av—bv(v+〃)+c(v—b)实际气体状态方程考虑到了气体分子具有一定的体积,所以用分子可自由活动的空间〃・b来取代理想气体状态方程中的体积好,考虑到气体分子间的引力作用,气体对容器壁面所施加的压力要比理想气体的小,用内压力修正压力项。.实际流体如何对压缩因子进行通用化关联对多种流体的实验数据分析显示,接近各自的临界点时,所有流体都显示出相似的性质,因此产生了用相对于临界参数的对比值,代替压力、温度和比体积的绝对值,并用它们导出普遍适用的实际气体状态方程的想法。实际流体的压缩因子是温度和压力的函数,在没有足够多的p-v-T数据关联状态方程的条件下,可以用对比态原理估算压缩因子。对比态原理:当用一组无量纲的对比参数表示流体性质时,所有流体具有同样的函数关系,它们的p-v-T几何图形几乎重叠;对于能满足同一对比状态方程式的同类物质,如果它们的对比参数以、匕、7;中有两个相同,则第三个对比参数就一定相同,物质也就处于对应态中。这一结论称为对应态定律(或对应态原理)。服从对应态原理,并能满足同一对比状态方程的一类物质称为热力学上相似的物质,经验指出,方式临界压缩因子相近的气体,可看出彼此热相似。如果用流体在临界点的性质为参照点,则对比态原理表示为:匕一(〃”).昂色格(Onsager)倒易定律的主要内容在近离平衡态的不可逆过程中,只要对共扼的热力学流人和热力学力X,作一满足嫡产率方程的适当选择,则联系流与力的唯象系数矩阵就是对称的,即有:%=Lji (z,J=1,2,•••,/?)昂色格倒易关系揭示:在一个复杂的有多种热力学力推动的不可逆过程中,一种力对它一种流的作用等于它一种力对该种流的反作用;由同时发生的两个不可逆过程相互干扰引起的现象称为倒易现象,而昂色格定律告诉我们两个倒易现象之间存在着一种对称关系。9,统计热力学与经典热力学的异同点研究对象相同:大量粒子构成的宏观平衡系统。研究方法不同:经典热力学:三大基本定律统计热力学:粒子微观结构与运动、力学规律、统计方法等。10.粒子各种典型运动形式的能级及能级简并度能级:粒子各运动形式的能量都是量子化的不连续的,就像台阶一样,称为能级。能级简并度:某一能级有多个相互独立量子态与之对应,这种现象称为简并;某一能级所对应的不同量子态的数目称为该能级简并度(或统计权重),以g表示。1)三维平动子:在空间作平动的粒子即三维平动子(Translation)。根据量子理论,质量为m
的粒子在边长分别为a,b,c的矩形箱中平动时,其能级公式为:_A2| n:8i-z-r+yv+r8小-b-c-J(a=b=c)公、〃、,、〃.称为平动量子数,确定粒子运动状态需要确定一组量子数,这组量子数就构成人 1 〜一个量子状态(QuantumState);平动能与粒子的质量及活动空间V有关;普朗克常数h=6.626xl0-34J-s;8=-+〃2+〃2)对于'Jy=f这时同一能级下有6种不同的微观状态,则a二6。这时同一能级下有6种不同的微观状态,则a二6。1J几 %TOC\o"1-5"\h\z1 2 31 3 22 1 32 3 13 1 23 2 12)刚性转子(Rotation):转动时保持形状和大小不变双原子分子可视为刚性转子。量子理论得出刚性转子的能级公式:h2
8//转动惯量/=〃后折合质量〃=""",R0为分子平衡键长团1+m2J为转动量子数,只能取0、1、2、…,故转动能是量子化的(不连续);转动能级简并度:g,.=(2J+l)3)一维谐振子:作一维简谐运动的粒子即一维谐振子(Vibration);双原子分子中原子沿化学键方向的振动可近似为一维简谐运动。一维谐振子的能级公式:4=(。+;卜/ 9=0』,2,…)分子振动基频口2列〃U为振动量子数,只能取0、1、2、3......,故振动能是量子化的(不连续);一维谐振子的振动能级是非简并的,g,,=l;4)电子和原子核运动:核运动相邻能级差更大,量子化效应更显著。系统中各粒子的电子运动及原子核运动一般均处于基态,此两种情况通常只考虑基态能。“常数 心。=常数11.特定宏观体系的微观状态数计算总体流程首先,对所研究的粒子以及由大量粒子组成的系统作如下相应的假设:(1)系统由N个可区别的近独立的粒子所组成,处在体积为V和能量为E的某个状态。不同粒子可用坐标q、动量P的不同数值加以区别。准经典统计法则认为,理想气体分子是不可区别的,各个分子既没有优先的位置,也没有优先的速度,就无法在q-P图中定位。然而,晶体的粒子是可以区别的,因为它们被强制地围绕着固定位置而振动,所以可以根据粒子的位置把它与其余粒子区别开。前已提出,近独立粒子是粒子间相互作用力可以忽略、但仍会发生碰撞,所以系统的总能量将等于各个粒子的能量之和,即E=Nr+N凡+…=»自i(2)每个粒子的能量都由哈密顿函数确定,所以能量是连续变化的。这就为以积分代替求和创造了条件。(3)占据同一个能级与,具有同一个微观态的粒子数可以不止一个,而有Ni个。也就是说,可用不同方式把所有粒子组合成不同能级,但总能量为E不变的各微观态的集合体。这一条当然对受泡利原理限制的那些粒子系统并不适用。泡利原理指明,波函数是反对称的全同粒子系统,例如电子系统不能有两个电子占据同一个量子态。(4)与固定的N、E和V相关的一切可能的微观态都是等儿率的,或者说,系统是孤立的,但并未限定系统处在平衡状态还是非平衡状态,系统中各个粒子总是在不断地热运动,所以能量为句的粒子数M和能量为4的粒子数M等都将是可变的,只是总能量E和总粒子数N保持不变,即E=N向+N2s2+…==constiN= N、+…==consti在给定的N,E和V下,如果某瞬间有Nl个粒子处在能量为句,简并度为©,N2个粒子能量为外,简并度为心,一,・Ni个粒子能量为卬简并度为生,那么,从N1个粒子中任取一个粒子其可选择微观态方式有处种,所以,N1个可区别粒子选微观态方式有&x&x-=g『种,N2个可区别粒子选微观态方式有刍乂无乂…二且彳种,••…,Ni个可区别粒子选微观态方式有&X&X…=g『种。N个粒子同时可供选择微观态方式数就应是g『xg:x-=ng//虽然N1个粒子的能量各为5,N2个粒子的能量各为4,…,但因粒子是可识别的,故可以采用不同的组合方式,将N1,N2,…重新组合。如果总粒子数是N,能级为4/2,…的粒子数分别是N1,N2,…,将有总组合数。二N\总组合数。二N\_N\N[!NJ…一Y]NJ按麦-玻统计法,给定N、E和V的宏观状态所可能实现的微观态总数应是上面二式的乘积,即N!若认为粒子全同而不可分辨时,采用准经典统计法,给定N、E和V的宏观状态所可实现的微观态总数Q为:Q=£1_x^-x...N,N,!
A /12.微观状态数计算中,费米(Fermi)子和玻色(Bose)子各自的特点与步骤玻色系统:粒子不可分辨;且处在一个个体量子态的粒子数不受限制;一般说来,如粒子数为N,,第i能级是8度简并的,则将M个粒子放置在第i能级上的方式数是:引N个粒子分布在所有能级上的方式数是用上式为代表的各项之积:通常+ 则上式可简化为费米系统:粒子不可分辨;且一个个体量子态上最多能容纳一个粒子。如果第i能级的简并度是8,粒子数也分布在&个量子态上,每个量子态最多容纳一个粒子
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 护理护理程序的实施与效益试题及答案
- 2025年行政管理语文考试关键知识点及答案
- 实战能力执业药师考试试题及答案
- 行政法学审查试题及答案探讨
- 行政法学中的实践案例分析方法研究试题及答案
- 2025年护士考试优化复习与试题及答案
- 2025年护士执业能力测试试题及答案
- 护士职业规划试题及答案分析
- 主管护师人际关系试题及答案
- 2025年卫生资格考试考生激励试题及答案
- 合肥市2025届高三年级5月教学质量检测(合肥三模)历史试题+答案
- 货运司机测试题及答案
- 意识形态单选试题及答案
- 医疗器械网络销售质量管理规范宣贯培训课件2025年
- 2024年宁波市余姚市委老干部局招聘考试真题
- 2025年广东省深圳市中考英语听说题型专项训练课件(模仿朗读 回答问题 提问信息)
- 2025年苏锡常镇四市高三语文5月模拟调研试卷(二)附答案解析
- 量子通信平台下的宇宙观测-全面剖析
- 辽宁大连公开招聘社区工作者考试高频题库带答案2025年
- 软件版本更新与升级维护合同
- 编曲制作合同协议
评论
0/150
提交评论