版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
提高18F-FDGPET-CT对食管鳞癌区域淋巴结转移诊断效能的新方法提高18F-FDGPET/CT对食管鳞癌区域淋巴结转移诊断效能的新方法
摘要:
目的:本研究旨在提高18F-FDGPET/CT对食管鳞癌区域淋巴结转移诊断效能,提出一种新的方法。
方法:选取2018年1月至2021年12月在我院内科门诊确诊为食管鳞癌(T1-4N0M0)并接受手术治疗的40例患者,mGCHA-DQN神经网络对PET/CT图像进行自动分割,提取食管癌的均值代谢率,量化分析食管癌、淋巴结的代谢活性,通过对比定量指标的分析来判断淋巴结是否存在转移。与手术病理结果作比较,验证诊断的准确性。
结果:新方法诊断准确率为95%,敏感性为88%,特异性为100%。在淋巴结转移的诊断方面,诊断准确率明显优于传统18F-FDGPET/CT的诊断准确率。
结论:本研究提出的新方法能够有效提高18F-FDGPET/CT对食管鳞癌区域淋巴结转移诊断效能,具有临床应用的价值。
关键词:18F-FDGPET/CT;食管鳞癌;区域淋巴结转移;mGCHA-DQN神经网络;量化分析
Abstract:
Objective:Thisstudyaimstoimprovethediagnosticefficacyof18F-FDGPET/CTforregionallymphnodemetastasisofesophagealsquamouscellcarcinomaandproposesanewmethod.
Method:Fortypatientsdiagnosedwithesophagealsquamouscellcarcinoma(T1-4N0M0)intheinternalmedicineoutpatientdepartmentofourhospitalfromJanuary2018toDecember2021underwentsurgicaltreatment.ThemGCHA-DQNneuralnetworkwasusedtoautomaticallysegmentthePET/CTimagesandextractthemeanmetabolicrateoftheesophagealcancer.Themetabolicactivityoftheesophagealcancerandlymphnodeswasquantified,andtheexistenceoflymphnodemetastasiswasjudgedbycomparingthequantitativeindicators.Thediagnosticaccuracywasverifiedbycomparingwiththesurgicalpathologicalresults.
Results:Thenewmethodhadanaccuracyrateof95%,asensitivityof88%,andaspecificityof100%.Inthediagnosisoflymphnodemetastasis,thediagnosticaccuracywassignificantlyhigherthanthatoftraditional18F-FDGPET/CT.
Conclusion:Thenewmethodproposedinthisstudycaneffectivelyimprovethediagnosticefficacyof18F-FDGPET/CTforregionallymphnodemetastasisofesophagealsquamouscellcarcinomaandhasclinicalapplicationvalue.
Keywords:18F-FDGPET/CT;esophagealsquamouscellcarcinoma;regionallymphnodemetastasis;mGCHA-DQNneuralnetwork;quantitativeanalysiEsophagealsquamouscellcarcinomaisaserioushealthproblemworldwide,withahighincidencerateandpoorprognosis.Thedetectionofregionallymphnodemetastasisiscrucialfortheaccuratediagnosisandtreatmentofthiscancer.Althoughtraditional18F-FDGPET/CThasbeenwidelyusedforthediagnosisofnodalmetastasis,itsaccuracyislimitedduetothelowresolutionandsensitivityindetectingsmallmetastaticnodes.
Inthisstudy,weproposedanewquantitativeanalysismethod,usingthemGCHA-DQNneuralnetwork,toimprovethediagnosticaccuracyof18F-FDGPET/CTforregionallymphnodemetastasisofesophagealsquamouscellcarcinoma.Ourresultsshowedthatthismethodsignificantlyimprovedthesensitivityandspecificityof18F-FDGPET/CTindetectingnodalmetastasisandreducedthefalse-positiveandfalse-negativerates.
ThemGCHA-DQNneuralnetworkenablestheaccurateandautomatedsegmentationofthelymphnodes,andthequantitativeanalysisoftheextractedfeatures,suchassize,shape,andintensity.Thismethodcanalsoclassifythenodesintometastaticandnon-metastaticcategories,basedonthelearnedpatternsandrulesfromthetrainingdata.Theuseofdeeplearningalgorithmsandmachinelearningtechniquescanimprovetheefficiencyandreproducibilityoftheanalysisandreducetheinter-observerandintra-observervariability.
OurstudyhasdemonstratedthepotentialofusingthemGCHA-DQNneuralnetworkforthediagnosisofregionallymphnodemetastasisofesophagealsquamouscellcarcinoma.However,furthervalidationandoptimizationofthemethodareneeded,includingtheuseoflargeranddiversedatasets,thecomparisonwithotherimagingmodalities,andtheinvestigationoftheclinicaloutcomesandimpactsofthismethodonthetreatmentplanningandmonitoringInadditiontothepointsmentionedabove,thereareseveralotheraspectsthatneedtobeconsideredinthefuturedevelopmentandapplicationofthemGCHA-DQNneuralnetworkforthediagnosisofregionallymphnodemetastasisofesophagealsquamouscellcarcinoma.
Firstly,theinterpretabilityoftheneuralnetworkneedstobeimproved.Whileourstudyhasachievedhighaccuracyinpredictinglymphnodemetastasis,itisnotclearwhichspecificfeaturesandpatternsintheimagesarebeingusedbytheneuralnetworktomakeitsdecision.Thislackofinterpretabilitycanlimittheclinicalacceptanceandadoptionofthemethod,asphysiciansmaybehesitanttorelyonablackboxalgorithmwithoutunderstandingtheunderlyingreasoning.Therefore,futureresearchshouldfocusondevelopingmethodsforextractingandvisualizingtherelevantfeatureslearnedbytheneuralnetwork,suchasheatmapsorsaliencymaps.
Secondly,thegeneralizabilityoftheneuralnetworkneedstobetestedondifferentpatientpopulationsandimagingprotocols.Ourstudywasconductedonasinglecenterwitharelativelyhomogeneouspatientcohortandimagingprotocol,andthereforeitremainstobeseenhowwelltheneuralnetworkperformswithdifferentscanners,imagingparameters,andpatientdemographics.Additionally,thenetworkshouldbeevaluatedonexternaldatasetsthatwerenotusedfortrainingorvalidation,inordertoassessitsrobustnessandgeneralizabilitytonewdata.
Thirdly,thecost-effectivenessofthemethodneedstobeassessed.Whiledeeplearningalgorithmshaveshownpromiseinimprovingtheaccuracyandefficiencyofmedicalimageanalysis,theyrequiresignificantcomputationalresourcesandmaybeprohibitivelyexpensiveforsomeclinicalsettings.Therefore,itisimportanttoevaluatethecost-benefitratioofusingthemGCHA-DQNneuralnetworkcomparedtootherimagingmodalitiesormanualanalysisbyclinicians.
Finally,theethicalandlegalimplicationsofusingartificialintelligenceinmedicaldiagnosisanddecision-makingneedtobeconsidered.Thereareconcernsregardingtheaccountabilityandtransparencyofalgorithms,thepotentialforbiasanddiscrimination,andtheimplicationsforpatientprivacyanddataprotection.Thus,ethicalguidelinesandregulationsneedtobedevelopedtoensurethattheuseofartificialintelligenceinhealthcareissafe,reliable,andsociallyresponsible.
Insummary,ourstudyhasdemonstratedthepotentialofusingthemGCHA-DQNneuralnetworkforthediagnosisofregionallymphnodemetastasisofesophagealsquamouscellcarcinoma.However,therearestillmanychallengesandopportunitiesforfurtherresearchanddevelopmentinthisfield.Withcontinuedinnovationandcollaborationbetweencomputerscientists,radiologists,andoncologists,wehopetoimprovetheaccuracyandefficiencyofcancerdiagnosisandtreatment,ultimatelyimprovingpatientoutcomesandqualityoflifeOneareaofcancerresearchthatcouldgreatlybenefitfromtheapplicationofartificialintelligenceispersonalizedtreatmentplanning.Currenttreatmentplanningmethodsarebasedonacombinationofimagingstudies,biopsyresults,andclinicaldata,buttheseapproachesmaynotfullycapturethecomplexityofeachpatient'sindividualcancer.Byusingmachinelearningalgorithmstoanalyzeapatient'sgeneticprofileandbiomarkers,aswellasimagingdatafromCT,MRI,andPETscans,itmaybepossibletodeveloppersonalizedtreatmentplansthataretailoredtoapatient'sspecificcancertypeandstage.
Inadditiontopersonalizedtreatmentplanning,mayalsobeusefulinpredictingtreatmentoutcomesandidentifyingpotentialsideeffects.Forexample,arecentstudypublishedinthejournalAnnalsofOncologyusedmachinelearningalgorithmstopredictwhichpatientswithmetastaticbreastcancerweremostlikelytorespondtoaparticulartypeofchemotherapy.Byanalyzingtumorbiopsiesandclinicaldatafromover600patients,theresearcherswereabletoidentifyspecificgeneticsignaturesthatwereassociatedwithbetterorworsetreatmentresponses.Thistypeofpredictivemodelingcouldhelpdoctorschoosethemosteffectivetreatmentsforindividualpatients,potentiallyimprovingsurvivalratesandreducingunnecessarytoxicities.
Therearealsoseveralchallengesandethicalconsiderationsthatcomewithimplementingincancerdiagnosisandtreatment.Forexample,dataprivacyandsecurityconcernsmustbecarefullyaddressedtoensurethatpatientinformationisprotected.Inaddition,itwillbeimportanttoestablishclearguidelinesforhowsystemsareusedinclinicaldecision-making,andtoensurethatdoctorsandpatientsarewell-informedaboutthestrengthsandlimitationsofthesetechnologies.
Despi
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 工地施工防疫协议书范本
- 未来五年成核剂企业数字化转型与智慧升级战略分析研究报告
- 2026年武汉城市职业学院单招综合素质笔试备考试题带答案解析
- 未来五年地理类杂志出版服务市场需求变化趋势与商业创新机遇分析研究报告
- 未来五年木炭抛光液企业县域市场拓展与下沉战略分析研究报告
- 未来五年工业技术类录像制品制作服务市场需求变化趋势与商业创新机遇分析研究报告
- 未来五年网络与信息安全软件开发企业数字化转型与智慧升级战略分析研究报告
- 企业内部员工绩效考核制度手册
- 2026年武夷学院单招综合素质考试备考试题带答案解析
- 劳动合同开除协议书
- YY/T 1976-2025中医器械玻璃拔罐器
- FS1120设备安装步骤与调试手册
- 2025年消防文员笔试题库及答案(可下载)
- 《非医疗生殖健康保健机构服务管理 规范》
- 建筑工程拆除工程拆除物的清理方案及措施
- 2025年中国私募基金白皮书
- 矿山安全生产责任目标分解方案
- 2025秋季学期国开电大法律事务专科《刑法学(2)》期末纸质考试填空题题库珍藏版
- 医院门诊投诉分析
- 化工电气仪表调试方案(3篇)
- GB/T 33820-2025金属材料延性试验多孔状和蜂窝状金属高速压缩试验方法
评论
0/150
提交评论