版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北师大版数学九年级上册期末测试题(时间:120分钟分值:120分)一、单选题(共10题;共30分)1.下列说法中,不正确的是() A.两组对边分别平行的四边形是平行四边形B.对角线互相平分且垂直的四边形是菱形C.一组对边平行另外一组对边相等的四边形是平行四边形D.有一组邻边相等的矩形是正方形2.如果ab=cd,且abcd≠0,则下列比例式不正确的是()A.B.C.D.3.已知一次函数的图象经过第一、三、四象限,则反比例函数的图象在()A.一、二象限B.一、三象限C.三、四象限D.二、四象限4.关于x的一元二次方程有实数根,则k的取值范围是()A.B.C.D.5.如图,在矩形ABCD中,AB=4,BC=3,点E在边AB上,点F在边CD上,点G、H在对角线AC上.若四边形EGFH是菱形,则AE的长是()A.2B.C.D.6.下列几何体是由4个相同的小正方体搭成的,其中左视图与俯视图相同的是()A.B.C.D.7.如图,一次函数y=kx+b与反比例函数y=6x(x>0)的图象交于A(m,6),B(3,n)两点,与x轴交于点C,与y轴交于点D,下列结论:①一次函数解析式为y=﹣2x+8;②AD=BC;③kx+b﹣6x<0的解集为0<x<1或x>3;④△AOB的面积是8,其中正确结论的个数是()A.4个B.3个C.2个D.1个8.某反比例函数的图象经过点(-1,6),则此函数图象也经过点().A.2,-3B.-3,-39.一个口袋中装有10个红球和若干个黄球,在不允许将求倒出来数的前提下,为估计袋中黄球的个数,小明采用了如下的方法:每次先从口袋中摸出10个球,求出其中红球数与10的比值,再把球放回口袋中摇匀,不断重复上述过程20次,得到红球与10的比值的平均数为0.4,根据上述数据,估计口袋中大约有()个黄球.A.30 B.15 C.20 D.1210.下列结论中正确的是()A.有两条边长是3和4的两个直角三角形相似B.一个角对应相等的两个等腰三角形相似
C.两边对应成比例且一个角对应相等的两个三角形相似D.有一个角为60°的两个等腰三角形相似二、填空题(共10题;共33分)11.如图,直线l1//l2//l3且与直线a、b相交于点A、B、C、D、E、F,若AB=1,BC=2,DE=1.5,则DF=.12.在一个不透明的袋子中有50个除颜色外均相同的小球,通过多次摸球试验后,发现摸到白球的频率约为36%,估计袋中白球有个.13.在一次新年聚会中,小朋友们互相赠送礼物,全部小朋友共互赠了110件礼物,若假设参加聚会小朋友的人数为x人,则根据题意可列方程为.14.反比例函数(k>0)图象上有两点与,且,则(填“”或“”或“”).15.已知实数m、n满足m2﹣4m﹣1=0,n2﹣4n﹣1=0,则mn+nm=________16.如图,在▱ABCD中,BE⊥AB交对角线AC于点E,若∠1=20°,则∠2的度数为________.17.如图,AB⊥AC,AD⊥BC,已知AB=6,BC=9,则图中线段的长BD=________,AD=________,AC=________18.若关于x的方程(a+3)x|a|﹣1﹣3x+2=0是一元二次方程,则a的值为________.19.如图,在平面直角坐标系中,点A(3,0),点B(0,1),作第一个正方形OA1C1B1且点A1在OA上,点B1在OB上,点C1在AB上;作第二个正方形A1A2C2B2且点A2在A1A上,点B2在A1C2上,点C2在AB上…,如此下去,则点Cn的纵坐标为________.
20.如图,在平面直角坐标系中,直线y=-33x+3
交x轴于A点,交y轴于B点,点C是线段AB的中点,连接OC,然后将直线OC绕点C逆时针旋转30°交x轴于点D,再过D点作直线DC1∥OC,交AB与点C1,然后过C1点继续作直线D1C1∥DC,交x轴于点D1,并不断重复以上步骤,记△OCD的面积为S1,△DC1D1的面积为S2,依此类推,后面的三角形面积分别是S3,S4…,那么S1=________,若S=S1+S2+S3+…+Sn,当n无限大时,S三、解答题(共9题;共57分)21.如图,在由边长为1的单位正方形组成的网格中,按要求画出坐标系及△A1B1C1及△A2B2C2;
(1)若点A、C的坐标分别为(﹣3,0)、(﹣2,3),请画出平面直角坐标系并指出点B的坐标;
(2)画出△ABC关于y轴对称再向上平移1个单位后的图形△A1B1C1;
(3)以图中的点D为位似中心,将△A1B1C1作位似变换且把边长放大到原来的两倍,得到△A2B2C2.
22.如图是一个粮仓(圆锥与圆柱组合体)的示意图,请画出它的三视图.23.已知,如图,E、F分别为矩形ABCD的边AD和BC上的点,AE=CF.求证:BE=DF.
24.随着国家“惠民政策”的陆续出台,为了切实让老百姓得到实惠,国家卫计委通过严打药品销售环节中的不正当行为,某种药品原价200元/瓶,经过连续两次降价后,现在仅卖98元/瓶,现假定两次降价的百分率相同,求该种药品平均每场降价的百分率.25.如图1,在Rt△ABC中,∠BAC=90º.AD⊥BC于点D,点O是AC边上一点,连接BO交AD于F,OE⊥OB交BC边于点E.求证:△ABF∽△COE;当O为AC边中点,且时,如图2,求的值;当O为AC边中点,且时,直接写出的值.
26.如图,已知四边形ABCD是矩形,对角线AC、BD相交于点O,CE∥BD,DE∥AC,CE与DE交于点E.请探索CD与OE的位置关系,并说明理由.
27.如图,在平面直角坐标系中,AO⊥BO,∠B=30°,点B在y=3x的图象上,求过点A的反比例函数的解析式.
28.如图,AD是△ABC的中线,AE∥BC,BE交AD于点F,且AF=DF.
(1)求证:四边形ADCE是平行四边形;
(2)当AB、AC之间满足AB=AC时,四边形ADCE是矩形;
(3)当AB、AC之间满足AB=AC,AB⊥AC时,四边形ADCE是正方形.29.如图1,平面直角坐标系中,△OAB的顶点A,B的坐标分别为(-2,4)、(-5,0).将△OAB沿OA翻折,点B的对应点C恰好落在反比例函数(k≠0)的图象上(1)判断四边形OBAC的形状,并证明.(2)直接写出反比例函数(k≠0)的表达式.(3)如图2,将△OAB沿y轴向下平移得到△OA'B',设平移的距离为m(0<m<4),平移过程中△O'A'B'与△OAB重叠部分的面积为S.探究下列问题请从A,B两题中任选一题作答,我选择___________A:若点B的对应点B’恰好落在反比例函数(k≠0)的图象上,求m的值,并直接写出此时S的值B:若S=,求m的值;(4)如图3,连接BC,交AO于点D,点P是反比例函数(k≠0)的图象上的一点,请从A,B两题中任选一题作答,我选择____________A:在x轴上是否存在点Q,使得以点O,D,P,Q为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的平行四边形的顶点P,Q的坐标;若不存在,说明理由;B:在坐标平面内是否存在点Q,使得以点A,O,P,Q为顶点的四边形是矩形?若存在,直接写出所有满足条件的点Q的坐标;若不存在,说明理由
答案解析部分一、单选题1.C2.A3.D4.C5.D6.C7.A8.A9.B10.D二、填空题11.4.512.1813.14.>15.2或﹣1816.110°17.4;2;318.319.3-20.34;9三、解答题21.解:(1)如图所示,B(﹣4,2);
(2)如图所示:△A1B1C1即为所求;
(3)如图所示:△A2B2C2即为所求.
22.23.证明:证法一:∵四边形ABCD为矩形,
∴AB=CD,∠A=∠C=90°.
在△ABE和△CDF中
∵{AE=CF∠A=∠CAB=CD,∴△ABE≌△CDF(SAS),
∴BE=DF(全等三角形对应边相等)
证法二:∵四边形ABCD为矩形,
∴AD∥BC,AD=BC,
又∵AE=CF,∴AD-AE=BC-CF
即ED=BF,
而ED∥BF,
∴四边形BFDE为平行四边形
∴24.解:设该种药品平均每场降价的百分率是x,由题意得:200(1-x)2=98
解得:x1=1.7(不合题意舍去),x25.解:(1)证明:∵AD⊥BC∴∠DAC+∠C=90º∵∠BAC=90º,∴∠DAC+∠BAF=90º∴∠BAF=∠C.∵OE⊥OB,∴∠BOA+∠COE=90º,∵∠BOQ+∠ABF=90º,∴∠ABF=∠COE.∴△ABF∽△COE(2)∵∠BAC=90º,,AD⊥BC∴∴设AB=1则AC=2,BC=,BO=∴,,∵∠BDF=∠BOE=90º,∠FBD=∠EBO,∴△BDF∽△BOE.由(1)知BF=OE,设OE=BF=,∴,∴,在△DFB中,,∴,∴,∴(3).26.解:DC⊥OE.
证明如下:∵CE∥BD,DE∥AC,
∴四边形OCED为平行四边形,
∵四边形ABCD是矩形,对角线AC、BD交于点O,
∴OD=OC,
∴四边形OCED是菱形,
∴DC⊥OE27.解:作AD⊥x轴于D,BE⊥x轴于E,如图,
设B(m,3m)
在Rt△ABO中,∵∠B=30°,
∴OB=3OA,
∵∠AOD=∠OBE,
∴Rt△AOD∽Rt△OBE,
∴ADOE=ODBE=OAOB
,即ADm=OD3m=13
,
∴AD=33m,OD=3m,
∴A点坐标为(-3m,33m)28.(1)证明:∵AD是△ABC的中线,
∴BD=CD,
∵AE∥BC,
∴∠AEF=∠DBF,
在△AFE和△DFB中,
∠AEF=∠DBF∠AFE=∠BFDAF=DF,
∴△AFE≌△DFB(AAS),
∴AE=BD,
∴AE=CD,
∵AE∥BC,
∴四边形ADCE是平行四边形;
(2)当AB=AC时,四边形ADCE是矩形;
∵AB=AC,AD是△ABC的中线,
∴AD⊥BC,
∴∠ADC=90°,
∵四边形ADCE是平行四边形,
∴四边形ADCE是矩形,
故答案为:AB=AC;
(3)当AB⊥AC,AB=AC时,四边形ADCE是正方形,
∵AB⊥AC,AB=AC,
∴△ABC是等腰直角三角形,
∵AD是△ABC的中线,
∴AD=CD,AD⊥BC,
又∵四边形ADCE是平行四边形,
∴四边形ADCE是正方形,
29.(1)判断四边形OBAC的形状,并证明.【解析】(1)四边形OBAC是菱形证明:过点A作AE⊥x轴于点E∵A(-2,4)∴OE=2,AE=4∵B(-5,0)∴BE=OB-OE=3在Rt△ABE中,由勾股定理得AB==5∴AB=BO∵△AOB沿AO折叠,点B的对应点是点C∴AB=AC,OB=OC∴AB=OB=AC=OC.∴四边形OBAC是菱形(2)直接写出反比例函数(k≠0)的表达式.【答案】【解析】∴C(3,4)∵C恰好落在反比例函数的图象上∴∴(3)如图2,将△OAB沿y轴向下平移得到△OA'B',设平移的距离为m(0<m<4),平移过程中△O'A'B'与△OAB重叠部分的面积为S.探究下列问题请从A,B两题中任选一题作答,我选择___________A:若点B的对应点B’恰好落在反比例函数(k≠0)的图象上,求m的值,并直接写出此时S的值【解析】连接BB’△OAB沿y轴向下平移得到△OA’B',BB’∥y轴,BB’=m∵B(-5,0)∴点B'的横坐标为-5将x=-5代入.得y=-2.4B'(-5,-2,4),BB’=2.4,即m=2.4B:若S=,求m的值;【解析】连接AA′并延长AA’交x轴于点H,设A'B',A’O′交OB于点M,N则AA′=m,由平移可知∠MAN=∠BAO,AH⊥OB,A’M∥AB,∴△A’MN∽△ABO∵AH=4,∴∴AA’=AH-A’H=4-,即m=4-(4)如图3,连接BC,交AO于点D,点P是反比例函数(k≠0)的图象上的一点,请从A,B两题中任选一题作答,我选择____________A:在x轴上是否存在点Q,使得以点O,D,P,Q为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的平行四边形的顶点P,Q的坐标;若不存在,说明理由;【答案】存在,点P与Q的坐标如下:P1(6,2)与Q1(7,0);P2(6,-2)与Q2(-7,0);P3(-6,-2)与Q3(-7,0);【解析】由题意D为AO中点∵A(-2,4)∴D(-1,2)设Q(t,0),
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年武汉航海职业技术学院马克思主义基本原理概论期末考试笔试题库
- 智慧校园智能学习环境下小学生数学学习评价与反馈方法研究教学研究课题报告
- 《手术室护理风险管理在预防护理风险中的关键作用研究》教学研究课题报告
- 高中生运用毛细管电泳法鉴别湖北与河南蜂蜜真伪的课题报告教学研究课题报告
- 2025年四川师范大学马克思主义基本原理概论期末考试模拟试卷
- 2025年潍坊职业学院马克思主义基本原理概论期末考试模拟试卷
- 2025年郴州智能科技职业学院马克思主义基本原理概论期末考试笔试真题汇编
- 2024年石家庄幼儿师范高等专科学校马克思主义基本原理概论期末考试真题汇编
- 2025年民航管理干部学院马克思主义基本原理概论期末考试模拟试卷
- 2025年河南开放大学马克思主义基本原理概论期末考试笔试真题汇编
- 2025-2030年中国海底节点(OBN)地震勘探市场深度分析及发展前景研究预测报告
- 《数据标注实训(中级)》中职全套教学课件
- 2025至2030中国生长因子(血液和组织)行业发展趋势分析与未来投资战略咨询研究报告
- 2025中国甲状腺相关眼病诊断和治疗指南
- 测绘测量设备保密制度范文
- 脑卒中后吞咽障碍的护理
- 麻醉机检查流程
- 提升信息素养教学课件
- 2025CSCO子宫内膜癌新进展及指南更新要点
- 血站采血操作规范
- DBJ50T-306-2018 建设工程档案编制验收标准
评论
0/150
提交评论