MEMS惯导-单目视觉里程计组合导航技术研究_第1页
MEMS惯导-单目视觉里程计组合导航技术研究_第2页
MEMS惯导-单目视觉里程计组合导航技术研究_第3页
MEMS惯导-单目视觉里程计组合导航技术研究_第4页
MEMS惯导-单目视觉里程计组合导航技术研究_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

MEMS惯导-单目视觉里程计组合导航技术研究摘要

惯性导航系统(InertialNavigationSystem,INS)和视觉里程计(VisualOdometry,VO)是目前室内和低空无人机(UAV)导航的两种主要方式。然而,INS存在着漂移误差随时间的积累问题,VO又容易受到场景(如光照强度、环境杂音等)的干扰。为了解决这些问题,MEMS惯性传感器和单目相机被广泛应用于导航中,成为组合导航的重要组成部分。本文针对MEMS惯导和单目VO组合导航技术的研究现状和发展趋势进行了综述和分析。首先介绍了MEMS惯导和单目VO的基本原理和优缺点,然后分别阐述了它们各自的应用场景和存在的问题。接着,结合实际的应用需求和发展趋势,提出了MEMS惯导和单目VO组合导航的技术框架,包括误差模型、状态估计、滤波算法、闭环校正等方面的研究内容。最后,提出了未来研究的方向和重点,以期为MEMS惯导和单目VO组合导航技术的发展提供参考和指导。

关键词:MEMS惯导;单目视觉里程计;组合导航;误差模型;状态估计;滤波算法;闭环校正

Abstract

InertialNavigationSystem(INS)andVisualOdometry(VO)aretwomajormethodsforindoorandlow-altitudeunmannedaerialvehicle(UAV)navigation.However,INShastheproblemofaccumulateddrifterrorovertime,andVOiseasilyaffectedbyscenes(suchaslightingintensity,environmentalnoise,etc.).Tosolvetheseproblems,MEMSinertialsensorsandmonocularcamerasarewidelyusedinnavigationandhavebecomeanimportantpartofintegratednavigation.ThispaperreviewsandanalyzesthecurrentstatusanddevelopmenttrendsofMEMSinertialnavigationandmonocularVOintegratednavigationtechnology.Firstly,thebasicprinciplesandadvantagesanddisadvantagesofMEMSinertialnavigationandmonocularVOwereintroducedrespectively,andtheirrespectiveapplicationscenariosandproblemswereelaborated.Then,basedonpracticalapplicationneedsanddevelopmenttrends,thetechnicalframeworkofMEMSinertialnavigationandmonocularVOintegratednavigationwasproposed,includingerrormodel,stateestimation,filteringalgorithm,closed-loopcalibration,etc.Finally,thedirectionandfocusoffutureresearchareputforwardtoprovidereferenceandguidanceforthedevelopmentofMEMSinertialnavigationandmonocularVOintegratednavigationtechnology.

Keywords:MEMSinertialnavigation;monocularvisualodometry;integratednavigation;errormodel;stateestimation;filteringalgorithm;closed-loopcalibratioIntegratednavigationtechnologybasedonMEMSinertialnavigationandmonocularvisualodometry(VO)hasreceivedincreasingattentioninrecentyearsduetoitsadvantagesoflowcost,smallsize,andhighaccuracy.However,theintegrationofthesetwosensorspresentsmanychallenges,suchassensorbiases,scalefactorerrors,andmodelingofsensorerrors.

Toaddressthesechallenges,researchershaveproposedvariouserrormodelstodescribetheerrorcharacteristicsofbothsensors.Stateestimationtechniques,suchasKalmanfiltersandparticlefilters,havealsobeendevelopedtoestimatethesystemstateandattenuatethemeasurementnoise.Closed-loopcalibrationmethodshavebeenproposedtoestimateandcorrectthesensorerrorsinreal-timeduringoperation.

Despitetheconsiderableprogressmadeinthisfield,therearestillseveraldirectionsforfutureresearch.Firstly,improvingtheaccuracyandrobustnessoftheintegratedsystemremainsachallenge,especiallyunderharshconditions.Secondly,theintegrationofothertypesofsensors,suchasGlobalNavigationSatelliteSystem(GNSS)andLiDAR,canfurtherenhancetheperformanceoftheintegratednavigationsystem.Thirdly,thereal-timeperformanceandcomputationalefficiencyofthealgorithmsneedtobeimprovedtomeettherequirementsofvariousapplications.

Inconclusion,theintegrationofMEMSinertialnavigationandmonocularVOisapromisingtechnologyfornavigationinvariousapplications,andfurtherresearchwilldriveitsadvancementandapplicationinthefutureAdditionally,theintegrationofinertialnavigationandmonocularVOopensupnewopportunitiesforautonomousnavigationinchallengingenvironments.Forexample,inindoorenvironmentswhereGPSsignalsmaybeweakornon-existent,thistechnologycanprovideaccuratenavigationwithouttheneedforexternalpositioningsystems.Thiscanbeparticularlyusefulinapplicationssuchasrobotics,whereprecisenavigationisessentialforsuccessfuloperation.

Anotherpotentialapplicationforthistechnologyisinautonomousvehicles,wheretheintegrationofinertialnavigationandmonocularVOcanaidinprecisevehiclepositioningandlocalization.Thiscouldeventuallyleadtothedevelopmentoffullyautonomousvehiclesystems,reducingtheneedforhumaninterventionindrivingtasks.

However,therearealsoseveralchallengesthatneedtobeaddressedintheintegrationofinertialnavigationandmonocularVO.Oneofthemostsignificantchallengesistheneedforaccuratecalibrationofboththeinertialandvisualsensors.Accuratecalibrationisessentialforachievinghigh-precisionnavigation,anditrequirescarefulconsiderationofvariousfactors,includingsensornoise,systembiases,andrandomerrors.

Anotherchallengeisthedesignofrobustalgorithmsthatcaneffectivelyfusedatafrombothinertialandvisualsensors.Thisrequiresthedevelopmentofcomplexfilteringtechniquesthatcanhandlenoisyandunreliablesensordatainreal-time,whilestillmaintainingaccuracyandprecision.

Despitethesechallenges,theintegrationofMEMSinertialnavigationandmonocularVOrepresentsasignificantstepforwardinthefieldofnavigation,withnumerouspotentialapplicationsinvariousindustries.ContinuedresearchanddevelopmentinthisareawillbeessentialforfurtheradvancingthetechnologyandunlockingitsfullpotentialinthefutureInadditiontothechallengespreviouslydiscussed,thereareseveralotherfactorsthatcanimpacttheaccuracyandreliabilityofMEMSinertialnavigationandmonocularVOsystemsinreal-timeapplications.Thesefactorsincludevibrations,temperaturevariations,andelectromagneticinterference.

VibrationscanintroduceerrorsintothemeasurementsrecordedbyMEMSinertialsensors.Thiscanbeparticularlyproblematicforapplicationsintheautomotiveandaerospaceindustries,wherevehiclesexperiencesignificantvibrationsduringoperation.Severalstrategieshavebeendevelopedtomitigatetheeffectsofvibrationsoninertialnavigationsystems,suchasusinghigh-sensitivitysensorsandapplyingsophisticatedfilteringalgorithmstothesensordata.Additionally,someresearchhasexploredtheuseofadditionalsensorstoprovidecomplementarydataandimprovetheaccuracyofthenavigationsysteminvibratingenvironments.

TemperaturevariationscanalsoimpacttheaccuracyofMEMSinertialsensors.Becausethesesensorsrelyonthemovementofsmall,delicatecomponents,theyaresusceptibletochangesintemperaturethatcancausedriftandothererrors.Somesolutionstothisproblemincludeincorporatingtemperaturecompensationalgorithmsthatcanadjustthesensorreadingstoaccountfortemperaturevariations,orusingsensorsthataremorerobusttotemperaturechanges.

Electromagneticinterference(EMI)isanotherfactorthatcanimpacttheperformanceofMEMSinertialsensors.Thiscanbeparticularlyproblematicinindustrialsettingswheretherearehighlevelsofelectromagneticradiationfromequipmentandmachinery.EMIcancausenoiseinthesensordata,whichcanmaskthesignalsthatthenavigationsystemistryingtodetect.OnesolutiontothisproblemistoshieldthesensorsandothercomponentsfromEMIusingspecializedmaterialsandtechniques.

Despitethesechallenges,therearenumerouspotentialapplicationsforMEMSinertialnavigationandmonocularVOsystemsinindustriessuchasaerospace,automotive,robotics,andvirtualreality.Forexample,thesesystemscouldbeuse

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论