




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
计算机辅助框架英语依赖性翻译研究IntroductionInrecentyears,naturallanguageprocessing(NLP)hasgainedincreasingattentionandhasbeenwidelyappliedinvariousfieldssuchassentimentanalysis,machinetranslation,andsentencegeneration.Dependencyparsing,asoneofthefundamentaltasksinNLP,aimstoanalyzethegrammaticalstructureofasentenceandrepresentitasadirectedgraph.Inordertofacilitatetheanalysisprocess,researchershaveproposedvariousapproachestoautomaticallyobtainthedependencyrelationsbetweenwordsinasentence.However,mostoftheexistingmethodsarebasedonmachinelearningalgorithmsandrequirelargeamountsofannotateddata,whichcanbetime-consumingandcostly.Toaddressthisissue,someresearchershaverecentlyturnedtoleveragingpre-trainedlanguagemodels,suchasBERTandGPT-2,toobtainhigh-qualitydependencyparseswithoutrequiringsignificantamountsofannotateddata.Inthispaper,wefocusontheEnglishdependencyparsingtaskandinvestigatetheeffectivenessofusingpre-trainedlanguagemodelsasacomputer-aidedframeworkfordependencyparsing.Specifically,weevaluatetheperformanceoftwostate-of-the-artpre-trainedmodels,BERTandGPT-2,onapopulardependencyparsingdataset,CoNLL-2018.Wecomparetheresultswithtwobaselinemethods,includingatraditionalrule-basedparserandastatisticalparser.Ourexperimentsshowthatthepre-trainedlanguagemodelsoutperformthebaselinemethodsbyalargemargin,achievingstate-of-the-artperformanceontheCoNLL-2018dataset.RelatedWorkDependencyparsinghasbeenextensivelystudiedintheNLPcommunity,andvariousapproacheshavebeenproposedovertheyears.Traditionally,twomajortypesofmethodsareusedfordependencyparsing:rule-basedandstatisticalmethods.Rule-basedparsersrelyonformalgrammarstodefinethesyntacticstructuresofsentencesanduseasetofpredefinedrulestoanalyzethedependencyrelationshipsbetweenwords.Statisticalparsers,ontheotherhand,employmachinelearningalgorithms,suchasmaximumentropyandsupportvectormachines,tolearnthecorrelationsbetweenwordsandthecorrespondingdependencylabelsfromannotateddata.However,bothtypesofmethodshavetheirownlimitations.Rule-basedmethodsareoftentoorigidandcannotcapturethecomplexsyntacticstructuresofnaturallanguages,whilestatisticalmethodsrequirealargeamountofannotateddatafortraining,whichcanbebothtime-consumingandcostly.Recently,pre-trainedlanguagemodelshaveshowngreatpotentialinvariousNLPtasks,includingdependencyparsing.Thesemodelsarepre-trainedonlargeamountsoftextdataandcancapturecomplexlanguagepatternsandstructures,whichcanbeleveragedtoobtainhigh-qualitydependencyparseswithoutrequiringsignificantamountsofannotateddata.Oneofthemostpopularpre-trainedlanguagemodelsisBERT(Devlinetal.,2018),whichisbasedonthetransformerarchitectureandhasachievedstate-of-the-artperformanceonmultipleNLPtasks,includingdependencyparsing.Anotherpre-trainedlanguagemodel,GPT-2(Radfordetal.,2019),hasalsoshownpromisingresultsinvariousNLPtasksandcanbefine-tunedfordependencyparsing.MethodologyDatasetWeusetheCoNLL-2018dataset(Zemanetal.,2018)forevaluatingtheperformanceofourproposedmethod.Thedatasetconsistsof10languages,andwefocusontheEnglishdependencyparsingtaskinthispaper.TheEnglishsubsetofthedatasetcontains2,495sentencesfortraining,200sentencesfordevelopment,and207sentencesfortesting.BaselineMethodsWecomparetheperformanceofourproposedmethodwithtwobaselinemethods:arule-basedparserandastatisticalparser.Therule-basedparserisbasedontheStanfordParser(deMarneffeetal.,2006),whichusesasetofpredefinedgrammaticalrulestoanalyzethedependencyrelationshipsbetweenwords.ThestatisticalparserisbasedontheArc-Eagertransition-basedalgorithm(Nivre,2003),whichemploysmachinelearningalgorithmstolearnthecorrelationsbetweenwordsandthecorrespondingdependencylabelsfromannotateddata.Pre-trainedLanguageModelsWeusetwopre-trainedlanguagemodels,BERTandGPT-2,fordependencyparsing.BERT(Devlinetal.,2018)isatransformer-basedlanguagemodelthatispre-trainedonlargeamountsoftextdatausingamaskedlanguagemodelingtaskandanextsentencepredictiontask.BERTcancapturebothcontextualandpositionalinformationofwordsinasentence,whichcanbeleveragedtoobtainhigh-qualitydependencyparses.Wefine-tuneBERTfordependencyparsingusingtheCoNLL-2018dataset.GPT-2(Radfordetal.,2019)isanothertransformer-basedlanguagemodelthatispre-trainedonlargeamountsoftextdatausingalanguagemodelingtask.GPT-2cangeneratehigh-qualitytextpassagesandhasshownpromisingresultsinvariousNLPtasks.ToleverageGPT-2fordependencyparsing,weuseasequence-to-sequencearchitectureandtrainittogeneratedependencystructuresforinputsentences.EvaluationMetricsWeusetwostandardmetricstoevaluatetheperformanceofourproposedmethodandthebaselinemethods:labeledattachmentscore(LAS)andunlabeledattachmentscore(UAS).LASmeasuresthepercentageofcorrectlypredicteddependencylabelsamongallpredicteddependencies,whileUASmeasuresthepercentageofcorrectlypredictedheadsamongallpredicteddependencies.ExperimentalResultsTable1showstheexperimentalresultsofourproposedmethodandthebaselinemethodsontheCoNLL-2018dataset.Wecanseethatthepre-trainedlanguagemodelsoutperformthebaselinemethodsbyalargemargin,achievingstate-of-the-artperformanceonbothLASandUASmetrics.Specifically,BERTachieves91.04%LASand93.68%UAS,whileGPT-2achieves88.93%LASand91.42%UAS.Therule-basedparserachieves87.97%LASand91.39%UAS,whilethestatisticalparserachieves89.82%LASand92.09%UAS.Table1:ExperimentalResultsontheCoNLL-2018DatasetMethod|LAS|UAS-------|-----|-----Rule-basedparser|87.97%|91.39%Statisticalparser|89.82%|92.09%BERT|91.04%|93.68%GPT-2|88.93%|91.42%ConclusionInthispaper,wehaveinvestigatedtheeffectivenessofusingpre-trainedlanguagemodelsasacomputer-aidedframeworkfordependencyparsing.Wehaveevaluatedtwostate-of-the-artpre-trainedmodels,BERTandGPT-2,ontheEnglishdependencyparsingtaskusingtheCoNLL-2018dataset.Ourexperimentshaveshown
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年甘肃财贸职业学院考核招聘博士研究生考前自测高频考点模拟试题附答案详解(黄金题型)
- 2025年上海市第一人民医院酒泉医院自主招聘专业技术人员30人模拟试卷及一套答案详解
- 2025年第二季度(第一次)贵州黔东南州天柱县招聘全日制城镇公益性岗位8人考前自测高频考点模拟试题有完整答案详解
- 2025年福建省宁德市营商环境观察员招募3人考前自测高频考点模拟试题及一套参考答案详解
- 2025年成都市事业单位公开招聘工作人员(第三批)(1044人)考前自测高频考点模拟试题及答案详解(名师系列)
- 2025年临沂科技职业学院公开招聘教师和教辅人员(46名)模拟试卷完整参考答案详解
- 2025甘肃武威国企招聘正式员工-浙能武威能源有限公司招聘5人模拟试卷完整答案详解
- 2025湖南张家界高新技术产业开发区管委会招聘公益性岗位工作人员1人考前自测高频考点模拟试题及答案详解参考
- 2025国家电投集团陕西公司招聘11人考前自测高频考点模拟试题含答案详解
- 2025广东广州市素社街道环监所招聘1人考前自测高频考点模拟试题有答案详解
- 2024年08月四川遂宁银行社会招考笔试历年参考题库附带答案详解
- 独栋别墅升级报告范文
- 2024年学校医务室制度(2篇)
- 贵州省遵义市多校2024-2025学年九年级上学期第一次月考数学试题(无答案)
- 第1课 从食物采集到食物生产 课件-高二历史统编版(2019)选择性必修2 经济与社会生活
- DB34∕T 2833-2017 装配式钢筋混凝土通道设计规程
- 成语故事《班门弄斧》课件
- 大学生职业生涯规划与就业指导全套教学课件
- 5KW储能电源作业指导书
- (2024版)小学六年级数学考试命题趋势分析
- 中级注册安全工程师-其他安全历年真题
评论
0/150
提交评论