




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
人居生活场景AI解决方案行业现状调查及投资策略报告
以智能工厂为发展方向,开展智能制造试点示范,加快推动云计算、物联网、智能工业机器人、增材制造等技术在生产过程中的应用,推进生产装备智能化升级、工艺流程改造和基础数据共享。着力在工控系统、智能感知元器件、工业云平台、操作系统和工业软件等核心环节取得突破,加强工业大数据的开发与利用,有效支撑制造业智能化转型,构建开放、共享、协作的智能制造产业生态。支持智能健康产品创新和应用,推广全面量化健康生活新方式。鼓励健康服务机构利用云计算、大数据等技术搭建公共信息平台,提供长期跟踪、预测预警的个性化健康管理服务。发展第三方在线健康市场调查、咨询评价、预防管理等应用服务,提升规范化和专业化运营水平。依托现有互联网资源和社会力量,以社区为基础,搭建养老信息服务网络平台,提供护理看护、健康管理、康复照料等居家养老服务。鼓励养老服务机构应用基于移动互联网的便携式体检、紧急呼叫监控等设备,提高养老服务水平。加快互联网与交通运输领域的深度融合,通过基础设施、运输工具、运行信息等互联网化,推进基于互联网平台的便捷化交通运输服务发展,显著提高交通运输资源利用效率和管理精细化水平,全面提升交通运输行业服务品质和科学治理能力。互联网+现代农业利用互联网提升农业生产、经营、管理和服务水平,培育一批网络化、智能化、精细化的现代种养加生态农业新模式,形成示范带动效应,加快完善新型农业生产经营体系,培育多样化农业互联网管理服务模式,逐步建立农副产品、农资质量安全追溯体系,促进农业现代化水平明显提升。(一)构建新型农业生产经营体系鼓励互联网企业建立农业服务平台,支撑专业大户、家庭农场、农民合作社、农业产业化龙头企业等新型农业生产经营主体,加强产销衔接,实现农业生产由生产导向向消费导向转变。提高农业生产经营的科技化、组织化和精细化水平,推进农业生产流通销售方式变革和农业发展方式转变,提升农业生产效率和增值空间。规范用好农村土地流转公共服务平台,提升土地流转透明度,保障农民权益。(二)发展精准化生产方式推广成熟可复制的农业物联网应用模式。在基础较好的领域和地区,普及基于环境感知、实时监测、自动控制的网络化农业环境监测系统。在大宗农产品规模生产区域,构建天地一体的农业物联网测控体系,实施智能节水灌溉、测土配方施肥、农机定位耕种等精准化作业。在畜禽标准化规模养殖基地和水产健康养殖示范基地,推动饲料精准投放、疾病自动诊断、废弃物自动回收等智能设备的应用普及和互联互通。(三)提升网络化服务水平深入推进信息进村入户试点,鼓励通过移动互联网为农民提供政策、市场、科技、保险等生产生活信息服务。支持互联网企业与农业生产经营主体合作,综合利用大数据、云计算等技术,建立农业信息监测体系,为灾害预警、耕地质量监测、重大动植物疫情防控、市场波动预测、经营科学决策等提供服务。(四)完善农副产品质量安全追溯体系充分利用现有互联网资源,构建农副产品质量安全追溯公共服务平台,推进制度标准建设,建立产地准出与市场准入衔接机制。支持新型农业生产经营主体利用互联网技术,对生产经营过程进行精细化信息化管理,加快推动移动互联网、物联网、二维码、无线射频识别等信息技术在生产加工和流通销售各环节的推广应用,强化上下游追溯体系对接和信息互通共享,不断扩大追溯体系覆盖面,实现农副产品从农田到餐桌全过程可追溯,保障舌尖上的安全。人工智能行业总体发展情况(一)人工智能行业市场规模人工智能利用机器学习和数据分析,对人的意识和思维过程进行模拟、延伸和拓展,赋予机器类人的能力。人工智能将重塑实体经济,提升社会劳动生产率,特别是在有效降低劳动成本、优化产品和服务、创造新市场和就业等方面为人类的生产和生活带来革命性的转变。人工智能是新一轮科技革命和产业变革的重要驱动力量。经历了从技术到产品、从产品到场景的快速发展过程,人工智能正逐步作为一种变革力量与产业深度融合,并成为目前新型基础设施建设的重要一环,面临广阔的发展空间。据Sage预测,至2030年人工智能的出现将为全球GDP带来额外14%的提升,相当于15.7万亿美元的增长。中国市场丰富的应用场景和庞大的数据量同样刺激人工智能市场的快速扩张,将从2019年的28.06亿美元增长至2023年的119.25亿美元,复合增长率高达43.58%。政府行业、金融业、互联网行业在经过近年的应用实践后将全面推广AI的应用,而新零售、新制造、医疗领域也将成为AI市场的新增长点。IDC预计未来这六大行业应用AI的3年复合增长率将超过30%。(二)人工智能行业产业链与国内产业链分析从产业链上来看,人工智能行业的基础层主要提供数据和算力支持,其中包括硬件设施、系统平台和数据资源三个维度;技术层为感知和认知能力,包括算法模型、基础框架和通用技术;应用层即场景和产品,主要包括各类型的智能产品和应用平台。同时,智能产品端即众多物联网化的终端和边缘端设备是数据资源的重要来源,形成了对基础层底层数据的持续补充,进而带动技术层的演进和迭代,从而构成完整的闭环。在人工智能应用技术方面,主要可分为计算机视觉、智能语音、自然语言处理三个主要方向。其中,计算机视觉主要研究计算机代替人眼对目标进行识别、跟踪和测量等相关课题,解决机器―看得清、看得懂的问题。智能语音识别技术主要研究人际之间语音信息的处理问题,即实现计算机、智能设备、家用电器等通过对语音的分析、理解和合成,实现―能听会说,具备自然语言交流的能力。自然语言处理技术主要研究计算机处理人类语言,是机器理解并解释人类写作、说话方式的能力,也是人工智能最初发展的切入点和目前的研究焦点。目前,国内的人工智能企业集中于应用层,基础层则较为薄弱。在中国新一代人工智能发展战略研究院2019年的统计中,产业链基础层、技术层和应用层的企业数量分别占总数的2.8%、22%和75.2%。由于对技术和资金的要求较高,基础层的底层技术由少数国际巨头垄断,国内行业结构稍显―头重脚轻,国内企业在算法和硬件算力领域仍然任重道远。近年来,国家就相关领域的政策正在经历由侧重技术应用到全产业链系统发展的方向转变,未来就基础层的发展,可预见更多资本和人才的政策倾斜,基础层也将成为未来人工智能整体市场的核心增长引擎。目前,计算机视觉技术是人工智能市场中的应用最为广泛的技术,在2020年上半年贡献了整体市场中超过48%的收入,其次为语音语义技术和机器学习开发平台技术。随着计算机视觉的应用落地走向成熟,应用场景不断拓展,计算机视觉技术的市场份额将持续保持较高水平。(三)AI解决方案市场容量智慧安防解决方案运用人工智能技术处理安防监控活动中产生的海量数据,并逐渐完成部分自主决策响应任务,实现事前积极预防、事中实时感知和快速响应,以及事后的快速调查,其典型应用包括政府主导建设的、天网工程等。随着我国数字城市、智慧城市建设步伐持续加快,安防需求已全面从政府主导的城市公共安全管理向更为私有化、场景个性化的方向发展,智能安防的市场边界将进一步扩展,智能安防产业规模预计将保持高位增长。沙利文预计至2023年,中国智慧安防人工智能产业市场规模将高达1,301.6亿元,2018年至2023年的年复合增长率将达到47.7%。城市治理解决方案运用人工智能技术,帮助政府统筹推进智慧城市的建设、运营和管理,并基于特定场景制订个性化解决方案,有效提高工作效率和立体化防控水平。以智慧交通枢纽为例,传统交通系统中存在各交通参与模块相互割裂、缺乏协调等问题,城市阻塞问题随之加剧。智慧交通枢纽整合交通资源与流量信息,实现交通元素之间的彼此协调、优化配置和高效使用。随着各地对城市运营精细化管理的需求不断增强,下游应用场景的不断拓展将持续加速城市治理市场的扩张。仅就智慧交通人工智能领域,沙利文预计2023年该领域市场规模将达到345.7亿元。缺乏信息化管理平台的传统园区随着入驻企业和员工访客的不断增加,存在管理效率低下、资源配置不合理等问题。智慧园区则可以通过云计算和人工智能等技术,实现园区的网络设施协同化、运营管理智能化,有效降低园区的运营成本。目前,我国共有超过15,000个产业园区,智能园区改造的渗透率仍然较低,未来有较大的市场增长空间。预计至2023年,中国智慧园区人工智能市场规模将达76.3亿元。计算机视觉技术通过识别分析消费者行为和商品信息,可对门店经营、消费者游逛行为等进行数据量化,对销售额进行多因子分析,是精准营销、智能化运营、门店管理等环节应用的必要基础。在此基础上机器学习技术则应用于数据建各场景的智能化水平。随着人工智能技术向更广泛的商业领域进行渗透,智慧泛商业的市场扩张将伴随着零售、市场营销等行业的转型升级得到进一步的加速。其中,AI+零售市场将保持50%以上的年复合增长率,规模将在2022年达到26.7亿元。互联网+创业创新充分发挥互联网的创新驱动作用,以促进创业创新为重点,推动各类要素资源聚集、开放和共享,大力发展众创空间、开放式创新等,引导和推动全社会形成大众创业、万众创新的浓厚氛围,打造经济发展新引擎。(一)强化创业创新支撑鼓励大型互联网企业和基础电信企业利用技术优势和产业整合能力,向小微企业和创业团队开放平台入口、数据信息、计算能力等资源,提供研发工具、经营管理和市场营销等方面的支持和服务,提高小微企业信息化应用水平,培育和孵化具有良好商业模式的创业企业。充分利用互联网基础条件,完善小微企业公共服务平台网络,集聚创业创新资源,为小微企业提供找得着、用得起、有保障的服务。(二)积极发展众创空间充分发挥互联网开放创新优势,调动全社会力量,支持创新工场、创客空间、社会实验室、智慧小企业创业基地等新型众创空间发展。充分利用国家自主创新示范区、科技企业孵化器、大学科技园、商贸企业集聚区、小微企业创业示范基地等现有条件,通过市场化方式构建一批创新与创业相结合、线上与线下相结合、孵化与投资相结合的众创空间,为创业者提供低成本、便利化、全要素的工作空间、网络空间、社交空间和资源共享空间。实施新兴产业双创行动,建立一批新兴产业双创示范基地,加快发展互联网+创业网络体系。(三)发展开放式创新鼓励各类创新主体充分利用互联网,把握市场需求导向,加强创新资源共享与合作,促进前沿技术和创新成果及时转化,构建开放式创新体系。推动各类创业创新扶持政策与互联网开放平台联动协作,为创业团队和个人开发者提供绿色通道服务。加快发展创业服务业,积极推广众包、用户参与设计、云设计等新型研发组织模式,引导建立社会各界交流合作的平台,推动跨区域、跨领域的技术成果转移和协同创新。互联网+绿色生态推动互联网与生态文明建设深度融合,完善污染物监测及信息发布系统,形成覆盖主要生态要素的资源环境承载能力动态监测网络,实现生态环境数据互联互通和开放共享。充分发挥互联网在逆向物流回收体系中的平台作用,促进再生资源交易利用便捷化、互动化、透明化,促进生产生活方式绿色化。人工智能行业发展情况和未来发展趋势(一)视觉人工智能在新技术方面的发展情况和未来发展趋势近年来,视觉人工智能的多数研究都集中在深度学习、检测和分类面部/手部/姿势、3D传感技术等方面。随着识别准确度的提升空间趋小,研究重心将逐渐转向技术协同、融合与应用。在视觉人工智能领域内,将终端设备演进为小型数据中心集群,并与云端高效协同将成为研究重点之一。终端设备的铺设和数据量的增长将使面向云端的传输压力倍增,这要求端侧完成部分云侧的图像处理功能。而在终端逐渐提高的算力要求,例如更加准确的实时识别,也需要端云架构的协同整合。在识别技术趋于成熟的今天,端云的深度结合与协同将成为识别技术的重要依托,如何将两侧的架构进行不断耦合优化也将不会局限于计算机视觉技术,而成为人工智能技术层共同探索的方向。目前,业内的部分研究也在突破对识别准确度的单一聚焦,转向更加综合的计算机视觉问题,图像描述、事件推理、场景理解等。未来,视觉人工智能将与其他的智能技术协同融合,评判因素也将由准确性延伸至识别的灵活性、推测的合理性。例如,融合自然语言处理技术来完成图像描述,将图片翻译为一段文字。而事件推理则是通过识别复杂视频中的因果关系,并基于因果关系给出合理推测。未来,安防领域可运用这项技术,建立端到端的时间推理系统,从而帮助提升案件侦查效率,改善治安管理效果。场景理解则通过由自身传感器收集的环境感知数据,获得周边场景的几何/拓扑结构、构成要素与时空变化,并进行语义推理甚至决策出未来时间内的运动走向。该项技术有广大的潜在市场亟待渗透,未来随着数据集的不断拓展和自监督学习,视觉人工智能的交互性和通用性将大大增强,为各种行业所用。技术的协同和融合将进一步积累针对多样化场景的解决方案,而更加广泛、密集的应用又将推动技术的不断迭代。海量数据、多种技术的交互作用有利于最终构成完整的技术赋能平台,持续的整合和创新将不断扩展视觉人工智能的技术边界,转化为下一阶段的产业化能力和平台化能力。(二)视觉人工智能在新产业、新业态方面的发展情况和未来发展趋势视觉人工智能技术不仅能够带来生产效率的提升,也会催生新产业及新商业模式,推动多行业产业链的重构。视觉人工智能技术产业化落地应用程度不断提高,在智能手机、智能汽车、智慧安防、智慧家居、智慧保险、智慧零售、互联网视频等领域均有广泛的应用,并形成了全新的产业链条与商业经营模式。可以预见,随着视觉人工智能技术不断发展,行业应用解决方案的建立和完善,以及政府对视觉人工智能行业的政策扶持,视觉人工智能技术将进一步渗透,助力各应用行业解决行业痛点,提高运营效率,实现行业转型和升级。1、视觉人工智能在智慧城市管理领域的发展情况在智慧城市管理领域,随着数亿个传感器被嵌入进城市里的各种设备,政府可以利用云端技术,提高对交通和街道的公共管理能力。以安防领域的治安管理业务转型为例,在重点场所布控的系统可以进行实时监控,将公安机关的事后侦查转型为主动预警预防。城市作为人工智能落地的综合载体,近年来获得了视觉人工智能技术全方位的渗透,不断挖掘新的需求与应用场景。以物流分拣为例,过去城市主要依靠人工分拣和配送,随着视觉人工智能和物联网的深度融合,物流分配逐渐走向数字化和自动化,这将极大地降低城市管理成本,优化城市管理效果。2、视觉人工智能在智慧社区管理领域的发展情况智慧社区领域则是智慧城市管理的延伸,通过将城市的管理理念引入社区单元,管理者可以通过完善基层信息化平台支持智慧城市的顶层建设。过去的社区主要依靠人力管理社区人流、物流、信息流,整体管理处于相对割裂的状态,在社区扩容和流动人口激增的背景下难以实现实时、主动的管理。在智慧城市的框架下,视觉人工智能与物联网、云计算、大数据深度融合,在物业管理、社区安全、便民服务等多个细分场景进行应用,例如出入人员记录、街道楼栋管理、留守老人关注服务等,提升物业管理和服务水平。3、视觉人工智能在智慧家居领域的发展情况在智慧家居领域,视觉人工智能有助于提升人与智慧家居产品的交互体验,构建以住宅为平台,基于物联网技术,由智能硬件、智能软件系统、云计算平台构成的家居生态圈。视觉人工智能最终能够实现人远程控制设备、设备对人的生物特征识别和适配、设备间互联互通、设备自我学习等功能,并通过收集、分析用户行为数据为用户提供个性化生活服务,使家居生活更加安全、舒适、节能、便捷。4、视觉人工智能在智慧零售领域的发展情况在智慧零售领域,从当前市场环境来看,线上线下融合、消费闭环是零售业的未来发展方向。从零售企业经营看,不断上涨的人工成本是制约企业盈利增长的主要瓶颈,少人化、无人化无疑是削减人力成本的重要方向。例如,商品识别在无人便利店、智能零售柜等场景的应用不仅有效降低了识别误差率,也对线下零售的人员结构进行优化,让员工的工作重心由重复性基础劳动转向会员管理和运营优化,提升运营的效率和效果。另一方面,围绕不同消费群体和消费场景的产品和服务也对未来零售的运营管理提出了更高的要求,而更精细的数据采集与定制化分析为运营管理优化提供了支持。零售企业可以将视觉人工智能、大数据、物联网等技术应用到零售区域划分、客户动线分析、客户属性分析等场景,更全面、准确、迅速地了解顾客需求,增强消费者体验。同时,这些应用有助于供应链改造和供给侧优化,为企业降本增效,更好地实现消费场景线上线下融合,构建智能数字化管理体系。互联网+电子商务巩固和增强我国电子商务发展领先优势,大力发展农村电商、行业电商和跨境电商,进一步扩大电子商务发展空间。电子商务与其他产业的融合不断深化,网络化生产、流通、消费更加普及,标准规范、公共服务等支撑环境基本完善。(一)积极发展农村电子商务开展电子商务进农村综合示范,支持新型农业经营主体和农产品、农资批发市场对接电商平台,积极发展以销定产模式。完善农村电子商务配送及综合服务网络,着力解决农副产品标准化、物流标准化、冷链仓储建设等关键问题,发展农产品个性化定制服务。开展生鲜农产品和农业生产资料电子商务试点,促进农业大宗商品电子商务发展。(二)大力发展行业电子商务鼓励能源、化工、钢铁、电子、轻纺、医药等行业企业,积极利用电子商务平台优化采购、分销体系,提升企业经营效率。推动各类专业市场线上转型,引导传统商贸流通企业与电子商务企业整合资源,积极向供应链协同平台转型。鼓励生产制造企业面向个性化、定制化消费需求深化电子商务应用,支持设备制造企业利用电子商务平台开展融资租赁服务,鼓励中小微企业扩大电子商务应用。按照市场化、专业化方向,大力推广电子招标投标。(三)推动电子商务应用创新鼓励企业利用电子商务平台的大数据资源,提升企业精准营销能力,激发市场消费需求。建立电子商务产品质量追溯机制,建设电子商务售后服务质量检测云平台,完善互联网质量信息公共服务体系,解决消费者维权难、退货难、产品责任追溯难等问题。加强互联网食品药品市场监测监管体系建设,积极探索处方药电子商务销售和监管模式创新。鼓励企业利用移动社交、新媒体等新渠道,发展社交电商、粉丝经济等网络营销新模式。(四)加强电子商务国际合作鼓励各类跨境电子商务服务商发展,完善跨境物流体系,拓展全球经贸合作。推进跨境电子商务通关、检验检疫、结汇等关键环节单一窗口综合服务体系建设。创新跨境权益保障机制,利用合格评定手段,推进国际互认。创新跨境电子商务管理,促进信息网络畅通、跨境物流便捷、支付及结汇无障碍、税收规范便利、市场及贸易规则互认互通。人工智能整体市场未来发展趋势(一)人工智能端侧与云侧的融合与协作是大势所趋中国物联网市场在未来三年预计将保持20%以上的增长速度,在2021年达到26,251亿元的市场规模,而物联网应用的渗透将带动对物联网芯片的需求。据MarketsandMarkets预计,2020年全球物联网芯片市场规模将达109.41亿美元,对云侧和端侧的要求将更加全面,在云侧寻求算力、响应时间、成本等因素的最优配置,在端侧提升算力和让数据尽可能实现本地处理。一方面,物联网将有更多的应用场景对延时更为敏感,例如智能家居、智能工业、智能医疗需要端侧设备的实时响应。另一方面,5G时代的无线网络将具有更低的时延性,大规模的数据流动将增加传输和云端的压力,这同样需要云侧和端侧的密切配合。目前云侧和端侧的配合主要体现在云端训练神经网络,再由终端或边缘端设备进行推理。未来,随着端侧设备的进一步迭代,设备能负载更多的计算分析工作,甚至可以承担部分的训练过程。另一方面,计算力的前置是行业发展的重要趋势,未来云侧的边界也会逐渐向终端和数据源头推进,整合云侧和端侧的架构,将AI处理分布在各个网络设备中。随着云侧和端侧的技术走向成熟,其协作的适应性和灵活性将成为下一阶段的竞争重点。未来云端和终端设备及其连接网络可能会构成一个庞大的AI处理网络,云端能够实时控制、调整终端的算法,重新定义、迭代硬件;而终端也能将数据及时反哺给云端进行自适应优化;训练和推理的相互协作、互补整合也将成为技术的一大探索方向,形成完整协同的智能生态。(二)视觉人工智能行业的竞争维度逐步从单一技术领先性竞争转向综合服务能力竞争AI芯片与算法都是人工智能行业的关键底层技术,两者的发展彼此交互、相互融合、相互促进,共同助推终端智能和AI生态的发展。以安防行业为例,前端采集设备和云端软件的协调、优化能有效提升整体方案运行的稳定性和效率。随着AI算法技术的不断进步,视觉人工智能企业技术成熟度均已达到较高水平,同行业企业间的技术差异正在逐渐缩小,行业技术进步所带来的边际改善效应正在衰减。在更多场景下,竞争者之间的技术水平都已经可以较好地满足用户的需求。故而,视觉人工智能领先企业间的竞争正从过往的以技术领先性为核心的技术研发竞争逐步转向以用户需求理解和应用场景落地为核心的技术应用竞争。以上变化也对企业的技术研发能力和综合服务能力提出了新的要求,过去在产业链单一环节的专业化优势正趋于弱化,而如何基于场景需要,打通底层的算法、芯片等核心技术,如何为客户提供全面、综合、成本更优、体验更好的方案和服务正成为未来行业竞争的关键因素。(三)核心城市日渐成为视觉人工智能技术等AI技术创新和应用的重要载体和试验地随着人工智能技术的发展和城市治理水平的内在需求趋强,城市日益成为人工智能技术创新融合应用的重要载体和试验地。在全球范围内,包括旧金山、纽约、伦敦、新加坡、东京、北京、上海、深圳等核心城市都在形成人工智能技术创新和应用的集聚。而中国政府正在大力推动的新型基础设施建设,核心城市也是建设的主战场和示范基地。未来,能抢占核心城市市场的人工智能企业也将拥有更丰富的技术落地场景,进而拥有更强的竞争优势。视觉人工智能技术作为目前应用最成熟的AI技术之一,未来将不仅局限在与公共安全相关的领域,有望在城市的发展和治理中发挥更加重要的作用。人工智能芯片行业人工智能芯片指应用在人工智能算法加速,主要实现大规模并行计算的芯片。而在更广泛的概念下,任何应用在人工智能领域的芯片都可被称为人工智能芯片。(一)人工智能芯片以技术路线分类深度学习架构下的人工智能芯片以技术路线进行划分,主要包括GPU、FPGA、ASIC、ASIP等类别。GPU使用SIMD让多个执行单元同时处理不同的数据,其离散化和分布式的特征,以及用矩阵运算替代布尔运算的设计使之适合处理深度学习所需要的非线性离散数据。与同样基于冯•诺依曼架构的CPU不同的是,在传统的冯•诺依曼结构中,CPU每执行一条指令都需要存储读取、指令分析、分支跳转才能进行运算,从而限制了处理器的性能;而GPU大部分的晶体管可以组成各类专用电路、多条流水线,运算单元明显增多,适合大规模的并行计算。GPU拥有更多的ALU用于数据处理,这样的结构适合对密集型数据进行并行处理,获得高于CPU几十倍甚至上千倍的运行速度。在云端,通用GPU,被广泛应用于深度神经网络训练和推理。但是,GPU并非专门针对AI算法,在执行算法中能耗相对较高、效率相对较低,有一定的时延问题。FPGA利用门电路直接运算,而用户可以自由定义这些门电路和存储器之间的布线,改变执行方案。其基本原理是集成大量的基本门电路以及存储器,通过大量的可编程逻辑单元实现针对性的算法设计,即实现以硬件定义软件。FPGA通过可编程逻辑综合,在并行计算上能够获得和GPU接近的并行计算性能,相比CPU,有明显的性能提升,同时在功耗上优势明显在深度学习算法仍处于高速迭代的状态下,FPGA因其可重构特性而具有显著优势。FPGA市场化的阻碍主要在于高昂的硬件和开发成本,编程相对复杂,为实现重构而降低了计算资源占比,整体运算能力受到影响。ASIC则为专用定制芯片的统称,在架构、设计、成本等方面存在更大的多样性,其中VPU是为图像处理和视觉处理设计的定制芯片。ASIC的架构相对简单,性能和功耗与通用型产品相比更低。由于不需要包含FPGA用于实现重构的可配置片上路由与连线,相同工艺的ASIC计算芯片可以拥有FPGA5-10倍的运算速度,实现PPA最优化设计。ASIC针对场景的定制化设计使其更适合终端推理场景,而如今它的主要劣势在于初期设计的资金投入和研发周期,且针对性设计限制了芯片的通用性。ASIP是一种新型的定制化指令集的处理器芯片,它为某个或某一类型应用而专门设计,通过权衡速度、功耗、成本、灵活性等多个方面的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年实习报告钱双月
- 2024-2025年三年级第二学期心理健康教育计划
- 汽车后面镜项目可行性研究报告评审方案设计2025年标准案例范文
- 木窗与铝窗质量对比措施
- 机场安检人员工作安排与管理措施
- 2025年度幼儿园家长志愿者计划
- 高一历史学生学习兴趣提升计划
- 煤矿智能化安全管理实施计划
- 缺耳狗的梦3000字8篇
- 电子地图数据开发与授权协议
- 《社区治理》 课件 第四章 社区治理模式
- 2024年同等学力申硕英语真题及答案
- 幕墙报价清单
- 三菱V73电路手册电路图
- 3.4重力坝的应力分析资料
- 2024年福建省中考历史试卷(含标准答案及解析)
- 黑龙江省易地调动领导干部周转住房管理办法
- 骨科快速康复(ERAS)
- 【现代管理原理与应用课程论文:X公司行政管理存在的问题及优化建议探析3200字】
- 业绩对赌协议模板
- 2024年临床执业医师考试真题附答案【培优b卷】
评论
0/150
提交评论