




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
如何短时间突破数学压轴题还有不到一个月的时间就要进行期中考试了,期中考试的重要性不必多说。各区期中考试的范围相信学生们都已经非常清楚。个人觉得现在大部分学生的困难在于旋转、圆,由于时间比较紧张,给大家一些复习资料和学习方法,希望能够帮到大家。一、旋转:纵观几年的数学试卷,最难的几何题几乎都是旋转,在此给出旋转中最常见的几何模型和一些解题技巧。旋转模型:1、三垂直全等模型三垂直全等构造方法:从等腰直角三角形的两个锐角顶点出发向过直角顶点的直线作垂线。2、手拉手全等模型手拉手全等基本构图:3、等线段、共端点(1)中点旋转(旋转180°) (2)等腰直角三角形(旋转90°)(3)等边三角形旋转(旋转60°) (4)正方形旋转(旋转90°)4、半角模型半角模型所有结论:在正方形ABCD中,已知E、F分别是边BC、CD上的点,且满足∠EAF=45°,AE、AF分别与对角线BD交于点M、N.求证:(1)BE+DF=EF;(2)S△ABE+S△ADF=S△AEF;(3)AH=AB;(4)C△ECF=2AB;(5)BM2+DN2=MN2;(6)△DNF∽△ANM∽△AEF∽△BEM;相似比为1:(由△AMN与△AEF的高之比AO:AH=AO:AB=1:而得到);解:(1);…………1’(2);…………2’(3)以点D为中心,将△DBC逆时针旋转60°,则点B落在点A,点C落在点E.联结AE,CE,∴CD=ED,∠CDE=60°,AE=CB=a,∴△CDE为等边三角形,∴CE=CD.…………4’当点E、A、C不在一条直线上时,有CD=CE<AE+AC=a+b;当点E、A、C在一条直线上时,CD有最大值,CD=CE=a+b;此时∠CED=∠BCD=∠ECD=60°,∴∠ACB=120°,……7’因此当∠ACB=120°时,CD有最大值是a+b.4.遇等腰,旋顶角。综上四点得出旋转的本质特征:等线段,共顶点,就可以有旋转。图形旋转后我们需要证明旋转全等,而旋转全等中的难点在于倒角,下面给出旋转倒角模型。二、圆1、所给条件为特殊角或者普通角的三角函数时;(1)特殊角问题或者锐角三角函数问题,必须有直角三角形才行,如果题目条件中给的特殊角并没有放入直角三角形中时,需要构造直角三角形。构造圆中的直角三角形,主要有以下四种类型:①利用垂径定理; ②直接作垂线构造直角三角形; ③构造所对的圆周角;④连接圆心和切点;(2)另外,在解题时,还应该掌握的一个技巧就是,利用同弧或等弧上的圆周角相等,把不在直角三角形的角,等量代换转移进直角三角形中.在圆中,倒角的技巧有如下图几种常见的情形:2、所给条件为线段长度、或者线段的倍分关系时;(1)因为圆中能产生很多直角三角形,所以可以考虑利用勾股定理来计算线段长度,在利用勾股定理来计算线段长度时,特别是在求半径时,经常会利用半径来表示其他线段的长度,常见情形如下;(2)圆中能产生很多相似三角形,所以经常也会利用相似三角形对应边成比例来计算线段长度,常见的圆中相似情形如下:注:圆中的中档题目,学校会留很多,在此就不放了,来两道有意思的题目。8.如图,AB是直径,弦CD交AB于E,,.设,.下列图象中,能表示y与x的函数关系是的()12211221Oxy1221Oxy1221Oxy3/21/21221OxyA. B. C. D.答案:A8.如图,以为圆心
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 幼教新理念新策略
- 工厂安全培训收获与体会课件
- 工厂安全培训总结报告课件
- 复合防火涂料耐久性机理-洞察及研究
- 手指画辣椒课件
- 手指操炒鸡蛋课件
- 化肥厂安全设备维护办法
- 学生食品安全课程培训课件
- 文化差异广告策略-洞察及研究
- 手卫生和消毒灭菌课件
- 煤场安全生产知识培训课件
- 2025-2026学年人教版(2024)小学体育与健康二年级全一册《防溺水知危险》教学设计
- 出海作业安全培训课件
- 软骨分化关键分子机制-洞察及研究
- (完整版)人教八年级下册期末物理测试真题经典及解析
- 储能项目竣工验收与交付方案
- 2025秋人教版(2024)二年级上册数学教学计划
- 桥梁河床断面测量课件
- 工程开工方案模板(3篇)
- 2025年部编版新教材语文八年级上册教学计划(含进度表)
- 普外科肛肠科科室介绍
评论
0/150
提交评论