




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高一数学函数的增减性陈建文第1页,共12页,2023年,2月20日,星期四函数的单调性
第2页,共12页,2023年,2月20日,星期四X-2-1012y41014X-2-1012y-8-1018X-2-1012y-0.5-110.5第3页,共12页,2023年,2月20日,星期四图像特征:abOxyy=f(x)x2x1f(x1)f(x2)增函数y=f(x)x2x1f(x1)f(x2)减函数Oxyab如果对于属于定义域I内某个区间上的任意两个自变量值x1和x2,当x1<x2
时,都有f(x1)<f(x2),则y=f(x)叫做增函数,当x1<x2
时,都有f(x1)>
f(x2),则y=f(x)叫做减函数。
第4页,共12页,2023年,2月20日,星期四第5页,共12页,2023年,2月20日,星期四
例1:如图是定义在闭区间[-5,5]上的函数y=f(x)的图象,根据图象说出y=f(x)的单调区间,以及在每一个单调区间上,y=f(x)是增函数还是减函数。
单调增区间是[-2,1),[3,5]
。答:函数y=f(x)的单调区间有[-5,-2),[-2,1),[1,3),[3,5],
其中单调减区间是[-5,-2),[1,3),
注意!用逗号间隔开第6页,共12页,2023年,2月20日,星期四例2:证明函数f(x)=3x+2在R上是增函数。
f(x1)-f(x2)=(3x1+2)-(3x2+2)由x1<x2
,得x1-x2<0即f(x1)<f(x2)证明:设x1,x2是R上的任意两个实数,且x1<x2,=3(x1-x2)于是f(x1)-f(x2)<0所以,函数f(x)=3x+2在R上是增函数。取值定号变形作差判断第7页,共12页,2023年,2月20日,星期四例3:判断函数f(x)=1/x在(-∞,0)上的单调性。第8页,共12页,2023年,2月20日,星期四例3:判断函数f(x)=1/x在(-∞,0)上的单调性。
f(x1)-f(x2)=1/x1
–1/x2由x1<x2<0,得x2-x1>0而x1x2>0即f(x1)>f(x2)证明:设x1,x2是(-∞,0)上的任意两个实数,且x1<x2,=(x2-x1)/x1x2于是f(x1)-f(x2)>0所以,函数f(x)=1/x在(-∞,0)上是单调减函数。取值定号变形作差判断想一想?第9页,共12页,2023年,2月20日,星期四例3:证明函数f(x)=1/x在(-∞,0)上是减函数。想一想:在课本59页例3已证明函数f(x)=1/x在(0,+∞)上也是减函数。在整个定义域内f(x)=1/x是不是减函数呢?反例:取x1=-1,x2=1,则f(-1)=-1,f(1)=1
可见x1<
x2时;f(x1)>f(x2)不一定成立。第10页,共12页,2023年,2月20日,星期四课堂小结2.单调性的证明步骤。1.函数单调性定义、图象特征、范围。
设定义域为I。在I内某个区间上的任意两个自变量x1、x2的值,当x1<x2时,都有f(x1)<f(x2)
,那么就说f(x)在这个区间上是增函数。如果对于属于定义域I内某个区间的任意两个自变量x1、x2的值,当x1<x2时,都有f(x1)>f(x2)
,那么就说f(x)在这个区间上是减函数。取值定号变形作差判断第11页,共12页,2023年,2月20日,星期四课外作业课本60页练习42.求y=-x2-6x+10的单调增区间、单调减区间。3.研
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 注册土木工程师线上学习试题及答案
- 考初级工的试题及答案
- 基于AI的2025年智能客服情感分析在客服中心的应用
- 2025国企面试题库及答案
- 工业互联网平台SDN在工业互联网平台设备管理中的优化应用报告
- 护士皮瓣移植试题及答案
- 宁波二模语文试题及答案
- 针对2025年市场流动性风险管理的量化投资策略绩效评估报告
- 数字孪生视角下2025年城市规划与建设中的智慧城市安防设施布局与评估优化优化报告
- 现代音乐理论与作曲技巧的结合研究试题及答案
- 快速入门穿越机-让你迅速懂穿越机
- 数字电子技术(广东工业大学)智慧树知到期末考试答案章节答案2024年广东工业大学
- 水利安全生产风险防控“六项机制”右江模式经验分享
- 人工智能对书法技法的革新
- MOOC 知识创新与学术规范-南京大学 中国大学慕课答案
- 淄博市2024届高三二模地理试题卷(含答案)
- AI技术在电影制作中的应用
- 美洲印第安文明的发展与衰落-玛雅、阿兹特克与印加
- 静脉溶栓的出血护理
- 镇江市区房屋买卖合同书合集3篇
- 4、沥青混凝土配合比设计
评论
0/150
提交评论