九年级下册数学试卷及答案_第1页
九年级下册数学试卷及答案_第2页
九年级下册数学试卷及答案_第3页
九年级下册数学试卷及答案_第4页
九年级下册数学试卷及答案_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

参考答案与试题解析共12小题中,最小的数是()C﹣23分,共36分,每小题A﹣....解答:解:画一个数轴,将A=﹣、B=0、C=﹣2、D=2标于数轴之上,∵C点位于数轴最左侧,∴C选项数字最小.故选:C.大小的方法,牢记数轴法是解题的关键.2.(3分)(2014•南昌)据相关报道,截止到今年设任务.5.78万可用科学记数法表示为()A5.78×103B57.8×103C0.578×104D5.78×104....考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于5.78万有5位整数,所以可以确定n=5﹣1=4.解答:解:5.78万=57800=5.78×104.故选D.点评:此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.3.(3分)(2014•南昌)某市6月份某周气温(单位:℃)为23、25、28、25、28、31、28,数组据的众数和中位数分别是()A.25、25B.28、28C.25、28D.28、31考点:众数;中位数.分析:根据中位数和众数的定义求解:众数是一数组据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数解答:解:将这数组据从小到大的顺序排列23,25,25,28,28,28,31,28是出现次数最多的,故众数是28℃.处于中间位置的那个数是28℃;故选B.点评:本题为统计题,考查中位数与众数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.B.(﹣2a2)3=﹣6a6C.(2a+1)(2a﹣1)=2a2D.(2a3﹣a2)÷a2=2a﹣1解答:解:B.(﹣C.(2a+1)(2a﹣1)=4a2﹣1,故本项错误;D.(2a3﹣a2)÷a2=2a﹣1,本项正确,故选:D.点评:本题主要考查了积的乘方运算、平方差公式以及多项式除以单项式和合并同类项,熟练掌握5.(3分)(2014•南昌)如图,贤贤同学用手工纸制作一个台灯灯罩,做好后发现上口太小了,于是他把纸灯罩对齐压扁,剪去上面一截后,正好合适,以下裁剪示意图中,正确的是()A.B.C.D.考点:简单几何体的三视图.面看得到的图形是主视图,可得答解答:解:压扁后圆锥的主视图是梯形,故后的主视图是A.本题考查了简单组合体的三视图,压扁是主视图是解题关键.分析:根据从正案.该圆台压扁A选项中所示的图形.故选:点评:6.(3分)(2014•南昌)小笔芯,用了56元;小丽买了2支笔和3盒笔芯,仅用了程组正确的是()锦和小丽购买了价格分别相同的中性笔和笔芯,小锦买了20支笔和2盒28元.设每支中性笔x元和每盒笔芯y元,根据题意列方考点:由实际问题抽象出二元一次方程组.x元和每盒笔芯y元,根据20支笔和2盒笔芯,用了56元;买了2支笔和328元.列出方程组成方程组即可.x元和每盒笔芯y元,由题意得,解答:解:设每支中性笔.故选:B.点评:此题考查实际问题抽出二元一次方程组,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.7.(3分)(2014•南昌)如图,AB∥DE,AC∥DF,AC=DF,下列条件中不能判断△ABC≌△DEF的是()C.EF=BC(1)AB=DE,则△ABC和△DEF中,,∴△ABC≌△DEF,故A选项错误;(2)∠B=∠E,则△ABC和△DEF中,,∴△ABC≌△DEF,故B选项错误;(3)EF=BC,无法证明△ABC≌△DEF(ASS);故C选项正确;(4)∵EF∥BC,AB∥DE,∴∠B=∠E,则△ABC和△DEF中,,∴△ABC≌△DEF,故D选项错误;点评:本题考查了全等三角形的不同方法的判定,注意题干中“不能”是解题的关键.8.(3分)(2014•南昌)如图,A、B、C、D四个点均在⊙O上,∠AOD=70°,AO∥DC,则∠B的度数为()分析:连接OC,由AO∥DC,得出∠ODC=∠AOD=70°,再由OD=OC,得出∠ODC=∠OCD=70°,求得∠COD=40°,进一步得出∠AOC,进一步利用圆周角定理得出∠B的度数即可.解答:解:如图,∴∠B=∠AOC=55°.故选:D.点评:此题考线是解决问题的查平行线的性质,等腰三角形的性质,三角形的内角和,圆周角定理,正确作出辅助关键.9.(3分)(2014•南昌)若α,β是方程x2﹣2x﹣3=0的两个实数根,则α2+β2的值为()A.10B.9C.7D.5考点:根与系数的关系.分析:根据根与系数的关系求得α+β=2,αβ=﹣3,则将所求的代数式变形为(α+β)2﹣2αβ,将其整体代入即可求值.解答:解:∵α,β是方程x2﹣2x﹣3=0的两个实数根,∴α+β=2,αβ=﹣3,∴α2+β2=(α+β)2﹣2αβ=22﹣2×(﹣3)=10.故选:A.点评:此题主要考查了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.△ABC沿射线BC的方向C重合,A.4,30°B.2,60°C.1,30°∠A′B′C=60°,AB=A′B′=A′C=4,进而得形,即可得△A′B′C′,再将△A′B′C′绕点A′逆时故选:B.点评:此题主要考查了平移和旋转的性质以及等边三角形的判定等知识,得出△A′B′C是等边三角1,将一个边长为a的正方形纸片剪去两个小矩形,得到一个“”的3所示,则新矩形的周长可表图案,如图2所示,再将示为()A.2a﹣3bB.4a﹣8bC.2a﹣4bD.4a﹣10b考点:整式的专题:几何图分析:根据题意列出关系式,加减;列代数式.形问题.去括号合并即可得到结果.解答:解:根据题意得:2(a﹣b+a﹣3b)=2(2a﹣4b)=4a﹣8b,故选B12.(3分)(2014•南昌)已知反比例函数y=的图象如图,则二次函数y=2kx2﹣4x+k2的图象大致A.B.C.D.分析:本题可先由反比例函数的图象得到字母系数k<﹣1,再与二次函数的图象的开口方向和对称轴的位置相比较看是否一致,最终得到答案.y=﹣k>1,∴k<﹣1,∴抛物线y=2kx2﹣4x+k2开口向下,1<<0,1与0之间,综合应用,正确判断抛物线开口方向∵3=9,2∴=3.点评:本题较简单,主要考查了学生开平方的运算能力.14.(3分)(2014•南昌)不等式组的解集是x>.分别求出各不等式的解解答:,点评:本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.O为中心按顺时针方向分别旋转90°,180°,考点:旋转的性质;菱形的性质.根据菱形的性质得出DO的长,进而求出S正方形DNMF,进而得出S△ADF即可得出答案.解答:解:如图所示:连接AC,BD交于点E,连接DF,FM,MN,DN,∵将菱形ABCD以点O为中心按顺时针方向分别旋转90°,180°,270°后形成的图形,∴AE=EO=,DO=﹣1,∴S∴则图中阴影部分的面积为:4S正方形DNMF=4+8﹣4=12﹣4.△ADF故答案为:12﹣4.点评:此题主要考查了菱形的性质以及旋转的性质,得出正确分割图形得出DO的长是解题关键.16.(3分)(2014•南昌)在Rt△ABC中,一个锐角为60°,BC=6.若点P在直线AC∠A=90°,有上(不与点A,C重合),且∠ABP=30°,则CP的长为6或2或4.考点:解直角三角形.专题:分类讨论.分析:根据题意画出图形,分4种情况进行讨论,利用直角三角形的性质解答.解答:解:如图1:当∠C=60°时,∠ABC=30°,与∠ABP=30°矛盾;如图2:当∠C=60°时,∠ABC=30°,∵∠ABP=30°,∴∠CBP=60°,∴△PBC是等边三角形,∴CP=BC=6;如图3:∵∠ABP=30°,∴∠PBC=60°﹣30°=30°,∴PC=PB,∵BC=6,∴AB=3,∴PC=PB===2;17.(6分)(2014•南昌)计算:(﹣)÷.考点:分式的混合运算.专题:计算题.分析:原式括号中两项利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结解答:解:原式=•=x﹣1.(1)在图1中画出一个与梯形ABCD面积相等,且以CD为边的三角形;(2)图2中画一个与梯形ABCD面积相等,且以AB为边的平行四边形.—应用与设计作图.解:设小正方形的边长为1,则ABCD=(AD+BC)×4=×10×4=20,S(2)如图∴平行四边形ABEF的面积是∴平行四边形ABEF就是所作的2,BE=5,BE边上的高为4,5×4=20,平行四边形.点评:本题主要考查了作图的设计和应用,解决问题的关键是根据面积相等求出高画图.19.(6分)(2014•南昌)有六张完全相同的卡片,分“√,×,×”,如图1.(1)若将卡片无标记的一面朝上摆在桌上再分别从两组卡片中随机各抽取一张,求两张卡片上标记“√”的概率.(请用“树形图法”或“列表法“求解)(2)若把A,B两组卡片无标记的一面对应粘贴在一起得到三张卡片,其正A,B两组,每组三张,在A组的卡片上分别、反面标记如图2所示,②若揭开盖子,看到的卡片正面标记是“√”后,猜想它的反面也是“√”,求猜对的概率.列表法与树状图法.专题:计算题.分析:(1)列表得出找出两种卡片上标记都是“√”的情况数,可能情况有3种,其中看到的标记是“√”的情况有2种,即可求看到的卡片正面标记是“√”后,它的反面也是“√”即可求出所求的概率;;√×√√(,)×√(,)√√(,)√×(,)√×(,)××(,)√×所有等可能的情况有9种,两种卡片上标记都是“√”的情况有2种,则P=;(2)①所有等可能的情况有3种,其中随机揭开其中一个盖子,看到的标记是“√”的情况有2种,②所有等可能的情况有2种,其中揭开盖子,看到的卡片正面标记是“√”后,它的反面也是“√”点评:此题考查了列表法与树状图法,知识点为:概率=所求情况数与总情况数之比.20.(6分)(2014•南昌)如图,在平面直角坐标系中,Rt△PBD的斜边PB落在y轴上,tan∠BPD=.延(2)若点D在反比例函数y=(k>0)的图象上,求反比例函数的解析式.分析:(1)根据正切值,可得PD的斜率,根据直线垂直,可得BD的斜率,可得直线BC,根据函数值为0,可得C点坐标;(2)根据自变量的值,可得D点坐标,根据待定系数法,可得函数解析式.,当y=0时,﹣x+3=0,x=6,C点坐标是(6,0);(2)当x=4时,y=﹣×4+3=1,∴D(4,1).∴反比例函数的解析式为y=.点评:本题考查了反比例函数与一次函数的交点问题,先求出PD的斜率求出BD的斜率,求出直校初中生阅读数学教科书的现状,随机抽取某校部分初中学生进行了调查,依据相关数据绘制成以下不完整的统计表,请根据图表中的信息解答下列类别人数占总人数比例(1)求样本容量及表格中a,b,c的值,并补全统计图;(2)若该校共有初中生2300名,请估计该校“不重视阅读数学教科书”的初中人数;(3)①根据上面的统计结,果谈谈你对该校初中生阅读数现状的看法及建议;②如果要了解全省初中生阅读数情况,你认为应该如何进行抽样?频数(率)分布直方图;用样本估计总体.分析:(1)利用类别为“一般”人数与所占百分比,进而得出样本容量,进而得出a,b,c的值;(2)利用“不重视阅读数学教科书”在样本中所占比例,进而估计全校在这一类别的人数;(3)根据(1)中所求数据进而分析得出答案,再从样本抽出的随机性进而得出答案.解答:1)由题意可得出:样本容量为:57÷0.38=150(人),∴a=150×0.3=45,b=150﹣57﹣45﹣9=39,c=39÷150=0.26,如图所示:(2)若该校共有初中生2300名,该校“不重视阅读数学教科书”的初中人数约为:2300×0.26=598(人);(3)①根据以上所求可得出:只有30%的学生重视阅读数学教科书,有32%的学生不重视阅读数学教科书或说不清楚,可以看出大部分学生忽略了阅读数学教科书,同学们应重视阅②如果要了进而分析.解全省初中生阅读数学教科书的情况,应随机抽取不同的学校以及不同的年级进利用样本估计总体等知识,进而结合抽样调查的随机进性而得出是解题关键.22.(8分)(2014•南昌)图两个菱形均成30°的夹角,示意图如图每个菱形的边长为10cm,锐角为60°.(1)连接CD,EB,猜想它们的位置关系并加以证明;(2)求A,B两点之间的距离(结果取整数,可以使用计算器)(参考数据:≈1.41,≈1.73,≈2.45)1中的中国结挂件是由四个相同的菱形在顶点处依次串联而成,每相邻(1)连接DE.根据菱形的性质和角的和差关系可得∠CDE=∠BED=90°,再根据平行线的判定可得CD,EB的位置关系;(2)根据菱形的性质可得BE,DE,再根据三角函数可得BD,AD,根据AB=BD+AD,即可求解.∵中国结挂件是四个相同的菱形,每相邻两个菱形均成30°的夹角,菱形的锐角为60°∴∠CDE=60°÷2×2+30°=90°,∴∠BED=60°÷2×2+30°=90°,∴∠CDE=∠BED,∴CD∥EB.同理可得,AD=10cm,AB=BD+AD=20≈49cm.点评:此题考查了解直角三角形的应用,菱形的性质和平行线的判定,主要是三角函数的基本概念及运算,关键是运用数学知识解决实际问题.23.(8分)(2014•南昌)如图C在AB的延长线上,AB=4,BC=2,P是1,AB是⊙O的直径,点⊙O上半部分的一个动点,连接OP,CP.(1)求△OPC的最大面积;(2)求∠OCP的最大度数;2,延长PO交⊙O于点CP是⊙O的切线.(3)如图D,连接DB,当CP=DB时,求证:分析:(1)在观察图形,当OP⊥OC时满足要求;(2)PC与⊙O相切时,∠OCP的度数最大,(3)连接AP,BP通过△ODB≌△BPC可求得DP⊥PC,从而求得PC是⊙O的切线.△OPC中,底边OC长度固定,因此只要OC边上高最大,则△OPC的面积最大;∵AB=4,∴OB=2,OC=OB+BC=4.∴当h最大时,S△OPC=2×2=4.=2,S此时h=半径△OPC(2)解:当PC与⊙O相切时,∠OCP最大.如答图2所示:∴∠OCP的最大度数为30°.∴∠A=∠D=∠APD=∠ABD,∵∴∴∠A=∠D=∠APD=∠ABD∠C,在△ODB与△BPC中,∴△ODB≌△BPC(SAS),∴∠D=∠BPC,∵PD是直径,∴∠DBP=90°,∴∠D+∠BPD=90°,∴∠BPC+∠BPD=90°,∴DP⊥PC,∵DP经过圆心,∴PC是⊙O的切线.点评:本题考查了全等三角形的判定和性质,切线的判定和性质,作出辅助线构建直角三角形是解24.(12分)(2014•南昌)如图1,边长为4的正方形ABCD中,点E在AB边上(不与点A,B重合),点F在BC边上(不与点B,C重合).(1)图2中的△EFD是经过两次操作后得到的,其形状为等边三角形,求此时线段EF的长;(2)若经过三次操作可得到四边形EFGH.①请判断四边形EFGH的形状为正方形,此时AE与BF的数量关系是AE=BF;②以①中的结论为前提,设AE的长为x,四边形EFGH的面积为y,求y与x的函数关系式及面积y的取值范围;(3)若经过多次操作可得到首尾顺次相接的多边形,其最大边数是多少?它可能是正多边形吗?如分析:(1)由旋转性质,易得△EFD是等边三角形;利用等边三角形的性质、勾股理定求出EF的长;(2)①四边形EFGH的四边长都相等,所以是正方形;利用三角形全等证明AE=BF;②求面积y的表达式,这是一个二次函数,利用二次函数性质求出最值及y的取值范围.(3)如答图2所示,经过多次操作可得到首尾顺次相接的多边形,可能是正多边形,最大边数为8,边长为4﹣4.设AE=CF=x,则BE=BF=4﹣x∴△BEF为等腰直角三角形.∴EF=BF=(4﹣x).∴DE=DF=EF=(4﹣x).在Rt△ADE中,由勾股理定得:AE2+AD2=DE2,即:x+42=[(4﹣x]2,解得:x1=8﹣4,x2=8+4(舍去)∴EF=(4﹣x)=4﹣4.(2)①四边形EFGH的形状为正方形,此时AE=BF.理由如下:由旋转性质可知,∵∠1+∠2=90°,∠2+∠3=90°,∴∠1=∠3.∵∠3+∠4=90°,∠2+∠3=90°,∴∠2=∠4.②利用①中结论,易证∴BF=CG=DH=AE=x,AH=BE=CF=DG=4﹣x.∴y=SABCD﹣4S△AEH=4×4﹣4×x(4﹣x)=2x2﹣.8x+16∴y=2x2﹣8x+16(0<x<4)∵y=2x2﹣8x+16=2(x﹣2)2+8,∴当x=2时,y取得最小值8;当x=0时,y=16,∴y的取值范围为:8≤y<16.(3)经过多次操作可得到首尾顺次相接的多边形,其最大边数是8,它可能为正多边形,边4﹣4.2所示,粗线部分是由线段EF经过7次操作所形如答图成的正八边形.设边长EF=FG=x,则BF=CG=x,BC=BF+FG+CG=x+x+x=4,解得:x=4﹣4.、全等三角形、等边三角形、等腰直角三角形、正多边形、勾股定理、二次函数等知识点.本题难度不大,着重对于几何基础知识的考查,是一道好题.25.(12分)(2014•南昌)如图1,抛物线y=ax2+bx+c(a>0)的顶点为A,B,若△AMB为等腰直角三角形,我们把抛物线上A,B两点之间的部分与线段AB围成的图形该抛物线对应的准蝶形,线段AB称为碟宽,M称为M到线段AB的距离称为M,直线y=m与x轴平行,且与抛物线交于点(1)抛物线y=x2对应的碟宽为4;抛物线y=4x2对应的碟宽为;抛物线y=ax2(a>0)对应的碟宽为;抛物线y=a(x﹣2)2+3(a>0)对应的碟宽为;(2)抛物线y=ax2﹣4ax﹣(a>0)对应的碟宽为6,且在x轴上,求a的值;(3)将抛物线y=anx2+bnx+cn(an>0)的对应准蝶形n记为F(n=1,2,3…),定义F1,F2,…,Fn为相似准蝶形,若F与F的相似比为,且Fn的碟顶是F的碟相应的碟宽之比即为相似比.nn1﹣n1﹣宽的中点,现将(2)中求得的抛物线记为y,其对应的准蝶形记为F1.1①求抛物线y2的表达式;②若F1的碟高为h,F的碟高为h,…Fn的碟高为h,则hn=,Fn的碟宽有端点横坐标122n为2+若不是,请说明理由.;F1,F2,…,Fn的碟宽端右点是否在一条直线上?若是,直接写出该直线的表达式;考点:二次函数综合题.y=x2,抛物线y=4x2的碟宽,且都利用端点(第一字母的抛物线y=ax2(a>0),类似.而抛物线y=a(x﹣2)式,可看成y=ax2平移得到,则发现碟宽只和a有关.(2)根据(1)的得a的值.(3)①由y1,易推y.②结合知h,h,h,…,h,hn都在直线x=2上,结论,根据碟宽易但2123证明需要有一般推广,可以考的碟宽中点,进而可得.另画图时易虑h∥h,且都过Fnn1n1﹣﹣所以推理也可得右端点的特点.对于“F1,F2,…,Fn的碟宽所有端点规律似乎很难,找规律更难,所以可以考虑基础的几个条两线段不共线,则结论不成立,反正结论成立.求直线方程只需考虑特殊点即可.如下:∵a>0,∴y=ax2的图象大致如下:其必过原点O,记AB为其碟宽,AB与y轴的交点为C,连接OA,OB.∵△DAB为等腰直角三角形,AB∥x轴,∴OC⊥AB,∴△ACO与△BCO亦为等腰直角三角形

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论