版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
0018-926X/$26.00©2010IEEE
IEEETRANSACTIONSONANTENNASANDPROPAGATION,VOL.58,NO.5,MAY20101545
DemonstrationofDirectionalModulationUsingaPhasedArray
MichaelP.Daly,GraduateStudentMember,IEEE,EricaLynnDaly,andJenniferT.Bernhard,Fellow,IEEE
Abstract—Afour-symbolmodulationiscreatedbyrepeatedswitchingofphaseshiftersinaphasedarray,inatechniqueknownasdirectionalmodulation(DM).Thephaseshiftsarechosentominimizethebiterrorrate(BER)inaline-of-sightchannelinadesireddirectionwhilemaximizingtheBERelsewhere.ADMtransmitterisdemonstratedinananechoicchamber,andresultsarecomparedwithatraditionalbasebandQPSKmodulationusingthesamephasedarray.ExperimentsindicatethattheDMtransmittercreatesanarrowerregionoflowBERsaroundthedesireddirectionthanthetraditionalphasedarraywhilemain-taininghighBERsinthesideloberegions.
IndexTerms—Directionalmodulation,Phase-shiftKeying(PSK),phasedarray,securecommunication.
I.INTRODUCTION
T
HEtraditionalmethodofsendingdigitalinformationusingaphasedarrayinvolvessynthesizingthedigitalsignalatbasebandandthenupconvertingtothecarrierfre-quencybeforesendingthesignalthroughtheRFportionofthetransmitter.Phaseshiftersareusedtosynthesizearadiationpat-ternthatmeetscertaincriteria,suchasmaximizingthepowerradiatedinthedesireddirectionandminimizingitelsewhere.
Onedrawbackofthismethodisthatthesameinformationis
transmittedinthesidelobes,andthatinformationcanstillberecoveredwithasufficientlysensitivereceiver.Ontheotherhand,directionalmodulation(DM),alsocallednear-fielddirectantennamodulation(NFDAM),synthesizesthemodulationintheRFportionofthetransmitterratherthanbaseband,causingthetransmitteddigitalsignaltobedirection-dependent[1]–[6]. WithDM,thesynthesisofadigitalmodulationcanbeim-plementedviaparasiticelementsofanantennaarray[1],[2],[5],phaseshifters[4],ordrivenreconfigurablearrayelements[3],[6].DMallowsmorecontroloverthetransmittedmodula-tion,includingtheabilitytosendmultipleindependentsignalsindifferentdirectionswiththesameRFchainandtheabilitytoscrambleaconstellationinundesiredtransmitdirections.ThedistortionofconstellationsviaDManditssecuritybenefitsareexplainedin[4],butuntilnowDMhasnotbeendemonstratedwithreal-timetransmissionofdata.Thepresentworkdemon-stratesaworkingDMtransmitterusingaphasedarrayandcom-paresitsperformancewithatransmitterusingthesamearraybut
ManuscriptreceivedAugust28,2009;revisedNovember06,2009;acceptedNovember30,2009.FirstpublishedMarch01,2010;currentversionpublishedMay05,2010.TheworkofbothM.P.DalyandE.L.DalywassupportedbyNDSEGFellowships.
TheauthorsarewiththeElectromagneticsLaboratory,DepartmentofElec-tricalandComputerEngineering,UniversityofIllinoisatUrbana-Champaign,Urbana,IL61801USA(e-mail:mpdaly@;edaly@;jbernhar@).
DigitalObjectIdentifier10.1109/TAP.2010.2044357
withtraditionalbasebandmodulation.SectionIIprovidesde-tailontheimplementationofeachtransmitterandthecommonreceiver.SectionIIIshowsthemeasuredperformanceofbothtransmittersinthepresenceofnoiseanddiscussessomedesigntradeoffs.
II.EXPERIMENTALSETUP
TocomparetheperformanceofDMversusbasebandmodula-tion,threeexperimentsareconductedforeachtransmitterwhereadesiredreceiverislocatedinaline-of-sightchannelatbroad-side,,and,relativetothetransmitarray.Eavesdrop-pingreceiversmaybelocatedinanyotherdirectionbesidesthatofthedesiredreceiver,andtheirlocationsarenotknowntothetransmitter.Afour-elementmicrostrippatcharrayisusedforbothtransmitters.Thearrayelementsarespacedone-halfwave-lengthapartattheiroperatingfrequency,7GHz.Thereceiveantennaisastandardgainhornorientedtoreceivethedominantpolarizationofthemicrostrippatcharray.Signalstransmittedinthecross-polarizationarenotconsideredintheanalysisofthedesiredreceiveroranyeavesdroppingreceiver,andareasubjectforfuturework.
A.TraditionalBasebandArraySetup
Theexperimentalprocedureofthetraditionalphasedarraytransmitterwillbeexplainedfirst.AblockdiagramoftheentirearrangementisshowninFig.1.Thefirststepforthetraditionalphasedarrayistocalculatethenecessaryphaseshiftstosteertowardthethreereceiverdirections.Thecalculatedphaseshiftsarestoredinacomputerlocatedinsideananechoicchamberalongwiththetransmitandreceiveantennas,andfourfive-bitMiteqdigitalphaseshifters[7].Thephaseshiftersareactuallysix-bitbutthenumberofanalogoutputsfromthecomputerlimitstheamountofcontrolbitstofive.Thephaseshiftswerecalculatedassumingisotropicelementpatterns.Thus,somebeamformingerrorisintroducedbecausethemicrostrippatchpatternsarenotentirelyconstantovertheanglesofinterest,whileothererrorisduetothequantizationofthephaseshifts.Still,themeasuredpatternswhenphasedtothethreedesireddirectionsallhavemainlobesofapproximatelythesamemag-nitude,showninFig.2.Sincethemainlobessteeredoffofbroadsidearenotsignificantlylowerthanthemainlobewhenallphaseshiftersaresetto0,thissuggeststhatthephasingisclosetoideal.Oneothersourceoferroristhepresenceofacomputerinsidetheanechoicchamber,whichslightlydistortsthepatterns,causingoneofthesidelobesinthebroadsidepatterninFig.2tobeabout5dBhigherthantheother.
ThebasebanddigitalmodulationisgeneratedbyanAgilentE4438Cvectorsignalgenerator.Apseudorandombinaryse-quence(PN15)issentbythetraditionalandDMtransmitters
1546IEEETRANSACTIONSONANTENNASANDPROPAGATION,VOL.58,NO.5,MAY2010
Fig.1.Experimentalconfigurationofthedirectionalmodulationtransmitterandreceiver.
Fig.2.Normalizedmeasuredpatternswhenthetransmitarrayissteeredtobroadside,—30frombroadside,and+20frombroadside.
[8].TheseinformationbitsareusedtocreateGray-codedQPSKmodulationwithabitrateof200kbpsthatispassedthrougharoot-raised-cosinefilter.Thevectorsignalgeneratorupconvertsthemodulationtoanintermediatefrequency(IF)of500MHz,anditisthenexternallymixedto7GHz.TheRFsignalisampli-fiedbyabroadbandamplifierwith21dBgainandthenpassesthroughafour-waypowerdividerbeforepassingthroughthephaseshiftersandfinally,theantennaarray.
Afterreceptionbyastandardgainhorn,root-raised-cosinebandpassfiltering,downconversiontobaseband,anddigitalsamplingisaccomplishedbyanAgilentE4440Aspectruman-alyzer.NoiseisaddedtoachieveadesiredSNRandthesignalisdemodulatedinMatlab[9].A10MHzreferencesignalbetweenthelocaloscillator(LO)andthespectrumanalyzermakesaphaselockloop(PLL)unnecessary.
B.DirectionalModulationArraySetup
ThearrangementoftheDMtransmitter,showninFig.3,dif-fersfromthetraditionaltransmitterbecausethemodulationisnowsynthesizedintheRFportion.Thesignalsentintothephaseshiftersisasinusoidatthearrayoperatingfrequency.Thesignalleavingthephaseshiftersismodulatedduetothefast,repeatedchangesofthephaseshifters,andthesemodulatedsignalsarenotsimplydelayedcopiesofeachother.Rather,thesignalsleavingthephaseshiftersaremodulatedinawaysothattheycombineinthefar-fieldtocreatethedesired4-arymodulationonlyinthedesireddirection[4].
Insteadofcalculatingasinglesetofphaseshifts,asetiscal-culatedforeachdigitalsymbol(inthiscase,four).Thisrequiresknowledgeoftheactiveelementpatterns,whicharemeasuredbeforehand.Ageneticalgorithm(GA)(explainedin[4])calcu-latesthefoursetsofphaseshiftsbasedontheactiveelementpatternswiththegoalofminimizingthefollowingratio:
(1)
Inotherwords,thegoaloftheGAistominimizetheBERto-wardthedesiredreceiverwhilemaximizingitelsewhere.Thereisa“don’tcare”regionof5oneithersideofthedesireddirec-tionthatisnotpartofthe“undesireddirections”in(1)becauseitisatransitionregionfromlowtohighBERs.ThesolutionsfromtheGAarealsorestrictedtothosethatarepossibletobeproducedbythequantizedfive-bitphaseshifters.Inordertoin-creaseaccuracy,theactualphaseshiftsofthephaseshiftersweremeasuredandusedintheGA.Forexample,switchingthemostsignificantbitinoneofthephaseshiftersproducesa175.3shiftinsteadof180.AsafinalstepintheGA,thesetsofphaseshiftswereassignedtothefoursymbolsbasedonGraycoding.TableIshowsthesetofphaseshiftsusedforcommunicationtowardbroadside.
DALYetal.:DEMONSTRATIONOFDIRECTIONALMODULATIONUSINGAPHASEDARRAY1547
Fig.3.Experimentalconfigurationofthetraditionalphasedarraytransmitterandreceiver.
TABLEI
SETOFPHASESHIFTSFORDMTOPRODUCEFOURSYMBOLSWHENTHE
DESIREDRECEIVERISATBROADSIDEFROMTHETRANSMITARRAY
Afterthephaseshiftsarecalculated,theyareusedtocon-structatextfilethatgovernsthereal-timeswitchingofthephaseshifters.Foreachsymbolconsistingoftwobitsofthepseudo-randombinarysequence,controlvoltagesarerecordedtopro-ducethecorrespondingphaseshiftsforthatsymbol.Twope-riodsofthebinarysequence(32767symbols)areloadedintoacomputercontaininganalogcontrolvoltagesforthefivebitsofeachphaseshifter.Thecomputerrepeatedlyreadsthroughtheentiresequencechangingthephaseshiftcontrolbitsatarateof100kSymbols/sec,yieldingabitrateof200kbps.
ThereceiverforDMisnearlythesameasthereceiverfortraditionalQPSKmodulation.Anormalbandpassfilterisusedinsteadofaroot-raised-cosinefilter,sincenopulseshapingisdoneontransmit.ThetransmittedCWsignalstillsharesacommonreferencewiththedownconverterinthereceiver,soaphaselockloopisnotneeded.However,thesymboltimingintheDMtransmitterisnowregulatedbythecomputercontrollingthephaseshifters,whichdoesnotshareacommonreferencewiththereceiver’ssamplingclock.Therefore,thereceivedsignalisoversampledbyafactoroffourabovethesymbolrateandadelaylockloopisimplementedtodeterminethebestsamplingpoints.
Thebitrateislimitedbythespeedofthecomputerpro-ducingtheanalogoutputs,sinceitmustproduceoutputsfor20controlbitseachtimetwobitsaretransmitted.Theswitchingspeedofthephaseshiftersisactuallymuchfaster,ontheorder
Fig.4.Measureddownconvertedoutputofaphaseshifterfedwitha7GHzCWsignalandswitchedbetween0to180atarateof100kHz.
ofnanoseconds[7].ThetransienteffectsofswitchingaphaseshifterareshowninFig.4.Here,asinglephaseshifteriscon-nectedbetweenasignalgeneratoroperatingat7GHzandthereceiverbyawire.Themostsignificantbit(0to180)isre-peatedlychangedatarateof100kHz.Thereceiverthendown-convertsthesignalandcreatescomplexbasebandsamples.Tenperiodsofswitching(100)areshowninFig.4.Ittakesabouthalfofthesymbolperiodforthephaseshiftertotransition,andthereforeoversamplingbyafactoroffourguaranteesthatatleastonesampleshouldoccurwhenthetransmittedsymbolhasreachedsteadystate.Thediscontinuouspartsofthecurvesarelikelyduetoadisallowedbiasvoltage.Whenthebiasvoltagetransitionsbetween0Vand5V,thereisapointaround2.5Vwhereboththe0and180modesinthephaseshifterareoff.Thispointinthemiddleofthetwobiasvoltagesiswhatwecallthedisallowedbiasvoltage.Atthispoint,thephaseshifter’sin-sertionlossincreasesbyabout20dB,suppressingthesignal.
1548IEEETRANSACTIONSONANTENNASANDPROPAGATION,VOL.58,NO.5,MAY2010
Fig.5.(a)MeasuredBERswhenbothtransmittersaredirectedtobroadside.AlsoshownisthepredictedBERofthetraditionaltransmitterbasedonthemeasuredradiationpatternandthepredictedlowerboundoftheBERofDMbasedonthemeasuredactiveelementpatterns.(b)ThenoisepowerintheDMcaseisdecreasedby0.6dBsothatbothtransmittersachievethesameBERtowardthedesiredreceiveratbroadside.
III.EXPERIMENTALRESULTS
Intheanechoicchamber,theantennaarrayforbothtransmit-terswasrotatedfromtowhilethereceiverhornan-tennawasstationary,tosimulatereceiversatthesedirections.
Between1.9and2.0millionbitsweresentateachdirection
in10incrementsandwhiteGaussiannoisewasaddedwith
anoisepowerof52dBmoverthefrequenciesofinteresttoachieveanSNRof12dBinthedesireddirection.Incomparison,thereceivedsignalshavereceivedpowerlessthan40dBm.Theinputpowerforbothtransmitterswas7.5dBm.
Fig.5(a)showstheBERsofadesiredreceiveratbroadsideandothereavesdroppingreceiversfromto.AlsoshownarepredictedBERcurvesbasedonmeasuredradiationpatterns.ThepredictedBERfortheDMtransmitterisalowerboundcalculatedfromtheGAusingtheactiveelementpat-terns[4].ThepredictedBERforthetraditionaltransmitteriscalculatedusingthemeasuredpatterndatafromFig.2.There-lationbetweentheradiationpatternpowerandBERforQPSKisgivenin[4].ThepredictedBERforthetraditionaltransmitteragreeswellwiththemeasuredBER,andthemeasuredBERof
Fig.6.Averagereceivedsymbolpowerbybothtransmitterswhendirectedto-wardbroadside.
theDMtransmitterisalwaysslightlyaboveitscalculatedlowerbound.ThecloseagreementbetweenBERsestimatedfromra-diationpatternsandtheBERsmeasuredfromtransmittingadig-italmodulationisimportantbecauseitmeansperformancecanbeaccuratelyassessedwhendesigningaDMtransmitter(forexample,usingtheGAin[4],givenmeasuredorsimulatedra-diationpatterns).
OneimportantfeatureinFig.5(a)isthattheBERofthetradi-tionaltransmitterinthedesireddirectionislessthantheBERof
theDMtransmitter.Thisistobeexpectedsincethephasedarraymaximizesthepowerinthebroadsidedirectionasitssolepri-ority.Ontheotherhand,theDMtransmittertradessomeofthepowertransmittedinthedesireddirectionforanarrowerregionoflowBERsandhighBERsinallotherdirections.ThisisalsoevidentinFig.5(a)inthe20regionaroundbroadsidewheretheBERofaneavesdropperissometimesanorderofmagni-tudelowerifthetraditionalarrayistransmittingcomparedtotheDMarray.
However,inordertofairlycomparethenarrownessoftheBERregions,theBERinthedirectionofthedesiredreceivershouldbeequalforboththeDMandtraditionaltransmitters.Inthecaseofthedesiredreceiveratbroadside,thisisaccom-plishedbyraisingthesignaltonoiseratio(SNR)oftheDMtransmitter0.6dB(byloweringtheaddednoisepoweraftersignalreception),whichlowerstheBERinalldirections.ThisnewBERcurveisshowninFig.5(b)alongwiththesamemea-suredBERsofthetraditionalarrayfromFig.5(a).TheDMtransmitterisabletotransmitalowBERinanarrowerregionthanthetraditionaltransmitter,confirmingtheresultsfirstcal-culatedin[4].
ThereasontheDMtransmitterproducesanarrowerlowBERregioncanbefoundfromthereceivedpowerandthereceivedconstellations.Fig.6showstheaveragereceivedsymbolpowercalculatedfromtheradiationpatternofthetraditionaltrans-mitterandtheactiveelementpatternsoftheDMtransmitter.ThisreceivedsymbolpowerwasusedtocalculatethepredictedBERcurvesinFig.5(a).SinceallconstellationpointshavethesamemagnitudeinthetraditionalarraywithQPSK,theaveragesymbolpowerequalstheinstantaneoussymbolpower.Onthe
DALYetal.:DEMONSTRATIONOFDIRECTIONALMODULATIONUSINGAPHASEDARRAY1549
Fig.7.Receivedconstellationsfrombothtransmittersbyaneavesdroppingre-ceiverat+50whenbothtransmittersdirectedtowardbroadside.
otherhand,theDMarraycreatesarbitraryconstellationswithdifferentpowerfordifferentsymbols,soaveragesymbolpowerisusedtocomparethetwomethods.
Towardthedesiredreceiveratbroadside,thetwotransmit-terssendaboutthesamepower(afterincreasingtheDMtrans-mitterpowerby0.6dB).Butoffbroadside,theDMarraytendstosendmorepowerthanthetraditionalarray.Yet,themeasuredBERsareeitherlowerfortheDMarrayoraboutthesameasthetraditionalarray.Thereasonforthiscanbegleanedfromthereceivedconstellation.Forexample,thefirst200receivedconstellationpointsthatwouldbeseenbyaneavesdropperat whentheDMandtraditionaltransmittersareintendingtotransmitto0isshowninFig.7.FromFig.6,thesymbolpowercalculatedfromradiationpatternsis7.7dBhigheratfortheDMarraythanthetraditionalarray.Whenactuallymea-suredbysendingdigitalsignals,thereceivedpowerwas7.6dBhigherfortheDMarraythanthetraditionalarray.TheBERmeasuredatwasapproximatelythesameforbothtrans-mitters(0.20forthetraditionalarrayand0.16fortheDMarray).ThereasontheDMarrayachievesthissamehighBERtowardtheeavesdropperwhiletransmittingatahigherpowerlevelisevidentfromtheconstellationdiagram.Threeoftheconstella-tionpointsaregroupedclosetogether,eventhoughtheyarefarfromtheorigin.Thisindicatesthreesignalswithhigherpowerthatlookapproximatelythesame,andthusaredifficulttode-modulatecorrectly.Thetraditionalbasebandconstellationsarethesameshaperegardlessofwherethereceiverislocated,sotheonlywaytoincreaseBERandreducethechanceofdemodula-tionbyaneavesdropperistoreducethepowerofeachsymbol,orequivalentlyreducethesidelobelevelintheradiationpattern. Figs.8and9(a)showthepredictedandmeasuredBERwhenthedesiredreceiverisatand,respectively.ThesefigureshavethesamecharacteristicsasFig.5(a).ThelowBERregionisnarrowerfortheDMtransmitterthanthetraditionaltransmitter,whiletheBERsareapproximatelyequalbetweenthetwotransmittersinthesideloberegion.Inthecasewhenthedesiredreceiverisat,bothtransmittersproducethesameBERatwithequalinputpower,duetothefactthatthe
Fig.8.MeasuredBERswhenbothtransmittersaredirectedto—30.AlsoshownisthepredictedBERofthetraditionaltransmitterbasedonthemeasuredradiationpatternandthepredictedlowerboundoftheBERofDMbasedonthemeasuredactiveelementpatterns.
Fig.9.(a)MeasuredBERswhenbothtransmittersaredirectedto+20.AlsoshownisthepredictedBERofthetraditionaltransmitterbasedonthemeasuredradiationpatternandthepredictedlowerboundoftheBERofDMbasedonthemeasuredactiveelementpatterns.(b)ThenoisepowerintheDMcaseisdecreasedby0.1dBsothatbothtransmittersachievethesameBERtowardthedesiredreceiveratbroadside.
traditionalarray’smaximumoftheradiationpatternoccursatratherthan.
1550IEEETRANSACTIONSONANTENNASANDPROPAGATION,VOL.58,NO.5,MAY2010
Inthecasewhenthedesiredreceiverisatfromarraybroadside,theDMtransmitterproducedthesameBERasthetraditionaltransmittertowardwhentheSNRoftheDMtransmitterwasincreasedby0.1dB,showninFig.9(b).There-gionoflowBERonceagainisnarrowerfortheDMtransmitter.
IV.CONCLUSION
Thisworkpresentsthefirstexperimentaldemonstrationofdi-rectionalmodulationbytransmittingdatainreal-time.There-sultsagreewellwiththecalculatedresultsfrom[4],indicatingthataDMtransmittermanipulatesadirection-dependentsignalsothatitishardertodecodeinmoreundesireddirections.Inad-dition,theDMarraysendsasignalthatwillbedecodedbythedesiredreceiverwiththesamelowBER(withsomesmallin-creaseintransmitpowerpossiblynecessary)withnoadditionalworkneededbythereceiver.
FutureworkconsistsofotherimplementationsofDM,in-cludingusingvectormodulatorssothatbothmagnitudeandphaseofeachantennaelementcanbemanipulated.Anotherareaofresearchisthereal-timedemonstrationofDMusingreconfig-urableradiatingelements.Thesynthesisofmorecomplexmod-ulations,theuseofradiatedcross-polarizedfields,andincorpo-rationintonon-line-of-sightchannelsarealsobeingexplored.
REFERENCES
[1]A.Babakhani,D.B.Rutledge,andA.Hajimiri,“Anear-fieldmodu-lationtechniqueusingantennareflectorswitching,”inProc.IEEEInt.SolidStateCircuitsConf.,Feb.2008,pp.188–189.
[2]A.Babakhani,D.B.Rutledge,andA.Hajimiri,“Transmitterarchitec-turesbasedonnear-fielddirectantennamodulation,”IEEEJ.Solid-StateCircuits,vol.43,no.12,pp.2674–2692,Dec.2008.
[3]M.P.DalyandJ.T.Bernhard,“Reconfigurablearrayformulti-direc-tionalandsecurecommunication,”inProc.AllertonAntennasSymp.,Monticello,IL,Sep.2008,pp.116–131.
[4]M.P.DalyandJ.T.Bernhard,“Directionalmodulationtechniqueforphasedarrays,”IEEETrans.AntennasPropag.,vol.57,pp.2633–2640,Sep.2009.
[5]A.Chang,A.Babakhani,andA.Hajimiri,“Near-fielddirectantennamodulation(NFDAM)transmitterat2.4GHz,”inProc.IEEEAntennasPropag.Soc.Int.Symp.,Jun.2009,pp.1–4.
[6]M.P.DalyandJ.T.Bernhard,“Beamsteeringinpatternreconfigurablearraysusingdirectionalmodulation,”IEEETrans.AntennasPropag.,acceptedforpublication.
[7]DigitalPhaseShifters,MITEQ,Inc.[Online].Available:http://amps./datasheets/MITEQ-DPS.PDF
[8]B.P.Lathi,ModernDigitalandAnalogCommunicationSystems,3rded.NewYork:OxfordUniv.Press,1998.
[9]MATLABVersion65(R14)ServicePack2,TheMathworks,Inc.,Natick,MA,2005.
MichaelP.Daly(S’09)wasborninSanJuan,PuertoRico,onOctober31,1984.HereceivedtheB.S.degree(withhighesthonors)andM.S.degreeinelectricalengineeringattheUniversityofIllinoisatUrbana-Champaign(UIUC),in2007and2008,respectively,whereheiscurrentlyworkingtowardthePh.D.degree.
Hisresearchinterestsincludereconfigurablean-tennas,arrays,anddigitalcommunications.
Mr.DalyistherecipientofanNDSEGfellowship.
EricaLynnDalywasbornin1985inChicago,IL.Since2003,shehasstudiedelectricalengineeringattheUniversityofIllinoisatUrbana-Champaign,wheresheiscurrentlyworkingtowardthePh.D.degree.
Herresearchinterestsincludesignalprocessingandappliedcommunicationtheory.
Mrs.DalyistherecipientofanNDSEGfellowship.
JenniferT.Bernhard(S’89–M’95–SM’01–F’10)wasbornonMay1,1966,inNewHartford,NY.ShereceivedtheB.S.E.E.degreefromCornellUniversityin1988andtheM.S.andPh.D.degreesinelectricalengineeringfromDukeUniversityin1990and1994,
respectively,withsupportfromaNationalScienceFoundationGraduateFellowship.
WhileatCornell,shewasaMcMullenDean’sScholarandparticipatedintheEngineeringCo-opProgram,workingatIBMFederalSystemsDivision
inOwego,NewYork.Duringthe1994–95academicyearsheheldthe
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年下半年湖南省退役军人服务中心招聘集中易考易错模拟试题(共500题)试卷后附参考答案
- 中医执业医师考核试题及答案
- 辅警入警考试题目及答案
- 综合行政执法证考试题库及答案
- 2025年供用热力合同(GF-1999-0503)供热设施回收协议
- 2025-2026学年广东省汕尾市陆丰市玉燕中学九年级(上)10月月考历史试卷(含答案)
- 2025年《童年》知识点练习(含答案)总结
- 高层建筑汽车吊机施工技术方案
- 读书日活动学校活动方案
- 评选小小数学家活动方案
- 2025年小象理货员考试试题及答案
- 中国民族舞蹈
- T-CCA 037-2025 老年人膳食设计与烹饪技术规范
- 国企印章管理办法
- 基于卷积神经网络的水果识别系统的设计与实现
- 自家房屋管理办法
- 2025个人洗护市场趋势洞察报告-魔镜洞察
- 2025年国信集团评标专家试题及答案
- 党务知识测试卷及答案
- 出租库房安全管理办法
- 合作机构名单管理办法
评论
0/150
提交评论