版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第页共页新人教版初中数学知识点总结(完好版)新人教版初中数学知识点总结(完好版)新人教版初中数学知识点总结(完好版)11、菱形的定义:有一组邻边相等的平行四边形叫做菱形。2、菱形的性质:⑴矩形具有平行四边形的一切性质;⑵菱形的四条边都相等;⑶菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。⑷菱形是轴对称图形。提示:利用菱形的性质可证得线段相等、角相等,它的对角线互相垂直且把菱形分成四个全等的直角三角形,由此又可与勾股定理联络,可得对角线与边之间的关系,即边长的平方等于对角线一半的平方和。3、因式分解定义:把一个多项式化成几个整式的积的形式的变形叫把这个多项式因式分解。4、因式分解要素:①结果必须是整式②结果必须是积的形式③结果是等式④因式分解与整式乘法的关系:m(a+b+c)5、公因式:一个多项式每项都含有的公共的因式,叫做这个多项式各项的公因式。6、公因式确定方法:①系数是整数时取各项最大公约数。②一样字母取最低次幂③系数最大公约数与一样字母取最低次幂的积就是这个多项式各项的公因式。7、提取公因式步骤:①确定公因式。②确定商式③公因式与商式写成积的形式。8、平方根表示法:一个非负数a的平方根记作,读作正负根号a。a叫被开方数。9、中被开方数的取值范围:被开方数a≥010、平方根性质:①一个正数的平方根有两个,它们互为相反数。②0的平方根是它本身0。③负数没有平方根开平方;求一个数的平方根的运算,叫做开平方。11、平方根与算术平方根区别:定义不同、表示方法不同、个数不同、取值范围不同。12、联络:二者之间存在着附属关系;存在条件一样;0的算术平方根与平方根都是013、含根号式子的意义:表示a的平方根,表示a的算术平方根,表示a的负的平方根。14、求正数a的算术平方根的方法;完全平方数类型:①想谁的平方是数a。②所以a的平方根是多少。③用式子表示。求正数a的算术平方根,只需找出平方后等于a的正数。新人教版初中数学知识点总结(完好版)21.圆是以圆心为对称中心的中心对称图形;同圆或等圆的半径相等。2.到定点的间隔等于定长的点的轨迹,是以定点为圆心,定长为半径的圆。3.定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等。4.圆是定点的间隔等于定长的点的集合。5.圆的内部可以看作是圆心的间隔小于半径的点的集合;圆的外部可以看作是圆心的间隔大于半径的点的集合。6.不在同一直线上的三点确定一个圆。7.垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧。推论1:①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;②弦的垂直平分线经过圆心,并且平分弦所对的两条弧;③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧。推论2:圆的两条平行弦所夹的弧相等。8.推论在同圆或等圆中,假如两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等。9.定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角。10.经过切点且垂直于切线的直线必经过圆心。11.切线的断定定理经过半径的外端并且垂直于这条半径的直线是圆的切线。12.切线的性质定理圆的切线垂直于经过切点的半径。13.经过圆心且垂直于切线的直线必经过切点14.切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。15.圆的外切四边形的两组对边的和相等外角等于内对角。16.假如两个圆相切,那么切点一定在连心线上。17.①两圆外离d>R+r②两圆外切d=R+r③两圆相交d>R-r)④两圆内切d=R-r(R>r)⑤两圆内含d=r)18.定理把圆分成n(n≥3):⑴依次连结各分点所得的多边形是这个圆的内接正n边形⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形。19.定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆。20.弧长计算公式:L=n兀R/180;扇形面积公式:S扇形=n兀R2/360=LR/2。21.内公切线长=d-(R-r)外公切线长=d-(R+r)。22.定理一条弧所对的圆周角等于它所对的圆心角的一半。23.推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。24.推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。新人教版初中数学知识点总结(完好版)3第一章丰富的图形世界1、几何图形从实物中抽象出来的各种图形,包括立体图形和平面图形。2、点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形中最根本的图形。线:面和面相交的地方是线,分为直线和曲线。面:包围着体的是面,分为平面和曲面。体:几何体也简称体。(2)点动成线,线动成面,面动成体。3、生活中的立体图形生活中的立体图形柱:棱柱:三棱柱、四棱柱(长方体、正方体)、五棱柱、……正有理数整数有理数零有理数负有理数分数2、相反数:只有符号不同的两个数叫做互为相反数,零的相反数是零3、数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,三要素缺一不可)。任何一个有理数都可以用数轴上的一个点来表示。4、倒数:假如a与b互为倒数,那么有ab=1,反之亦成立。倒数等于本身的数是1和-1。零没有倒数。正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0。互为相反数的两个数的绝对值相等。6、有理数比拟大小:正数大于0,负数小于0,正数大于负数;数轴上的两个点所表示的数,右边的总比左边的大;两个负数,绝对值大的反而小。7、有理数的运算:(1)五种运算:加、减、乘、除、乘方多个数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积的符号为负;当负因数有偶数个时,积的符号为正。只要有一个数为零,积就为零。有理数加法法那么:同号两数相加,取一样的符号,并把绝对值相加。异号两数相加,绝对值值相等时和为0;绝对值不相等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。一个数同0相加,仍得这个数。互为相反数的两个数相加和为0。有理数减法法那么:减去一个数,等于加上这个数的相反数!有理数乘法法那么:两数相乘,同号得正,异号得负,并把绝对值相乘。任何数与0相乘,积仍为0。有理数除法法那么:两个有理数相除,同号得正,异号得负,并把绝对值相除。0除以任何非0的数都得0。注意:0不能作除数。有理数的乘方:求n个一样因数a的积的运算叫做乘方。正数的任何次幂都是正数,负数的偶次幂是正数,负数的奇次幂是负数。(2)有理数的运算顺序先算乘方,再算乘除,最后算加减,假如有括号,先算括号里面的。(3)运算律加法交换律加法结合律乘法交换律乘法结合律乘法对加法的分配律8、科学记数法一般地,一个大于10的数可以表示成的形式,其中,n是正整数,这种记数方法叫做科学记数法。(n=整数位数-1)第三章整式及其加减1、代数式用运算符号(加、减、乘、除、乘方、开方等)把数或表示数的字母连接而成的式子叫做代数式。单独的一个数或一个字母也是代数式。注意:①代数式中除了含有数、字母和运算符号外,还可以有括号;②代数式中不含有“=、>、新人教版初中数学知识点总结(完好版)4一、函数及其相关概念1、变量与常量在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。一般地,在某一变化过程中有两个变量x与y,假如对于x的每一个值,y都有确定的值与它对应,那么就说x是自变量,y是x的函数。2、函数解析式用来表示函数关系的数学式子叫做函数解析式或函数关系式。使函数有意义的自变量的取值的全体,叫做自变量的取值范围。3、函数的三种表示法及其优缺点(1)解析法两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。(2)列表法把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。(3)图像法用图像表示函数关系的方法叫做图像法。4、由函数解析式画其图像的一般步骤(1)列表:列表给出自变量与函数的一些对应值(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。二、相交线与平行线1、知识网络构造2、知识要点〔1〕在同一平面内,两条直线的位置关系有两种:相交和平行,垂直是相交的一种特殊情况。〔2〕在同一平面内,不相交的两条直线叫平行线。假如两条直线只有一个公共点,称这两条直线相交;假如两条直线没有公共点,称这两条直线平行。〔3〕两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。邻补角的性质:邻补角互补。如图1所示,与互为邻补角,与互为邻补角。+=180°;+=180°;+=180°;+=180°。3、两条直线相交所构成的四个角中,一个角的两边分别是另一个角的两边的反向延长线,这样的两个角互为对顶角。对顶角的性质:对顶角相等。如图1所示,与互为对顶角。=;=。4、两条直线相交所成的角中,假如有一个是直角或90°时,称这两条直线互相垂直,其中一条叫做另一条的垂线。如图2所示,当=90°时,⊥。垂线的性质:性质1:过一点有且只有一条直线与直线垂直。性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。性质3:如图2所示,当a⊥b时,====90°。点到直线的间隔:直线外一点到这条直线的垂线段的长度叫点到直线的间隔。5、同位角、内错角、同旁内角根本特征:在两条直线(被截线)的同一方,都在第三条直线(截线)的同一侧,这样的两个角叫同位角。图3中,共有对同位角:与是同位角;与是同位角;与是同位角;与是同位角。在两条直线(被截线)之间,并且在第三条直线(截线)的两侧,这样的两个角叫内错角。图3中,共有对内错角:与是内错角;与是内错角。在两条直线(被截线)的之间,都在第三条直线(截线)的同一旁,这样的两个角叫同旁内角。图3中,共有对同旁内角:与是同旁内角;与是同旁内角。三、实数1、实数的分类〔1〕按定义分类:〔2〕按性质符号分类:注:0既不是正数也不是负数.2、实数的相关概念〔1〕相反数①代数意义:只有符号不同的两个数,我们说其中一个是另一个的相反数.0的相反数是0.②几何意义:在数轴上原点的两侧,与原点间隔相等的两个点表示的两个数互为相反数,或数轴上,互为相反数的两个数所对应的点关于原点对称.③互为相反数的两个数之和等于0.a、b互为相反数a+b=0.〔3〕倒数(1)0没有倒数(2)乘积是1的两个数互为倒数.a、b互为倒数.〔4〕平方根①假如一个数的平方等于a,这个数就叫做a的平方根.一个正数有两个平方根,它们互为相反数;0有一个平方根,它是0本身;负数没有平方根.a(a≥0)的平方根记作.②一个正数a的正的平方根,叫做a的算术平方根.a(a≥0)的算术平方根记作.〔5〕立方根假如x3=a,那么x叫做a的立方根.一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零.3、实数与数轴数轴定义:规定了原点,正方向和单位长度的直线叫做数轴,数轴的三要素缺一不可.4、实数大小的比拟〔1〕对于数轴上的任意两个点,靠右边的点所表示的数较大.〔2〕正数都大于0,负数都小于0,两个正数,绝对值较大的那个正数大;两个负数;绝对值大的反而小.〔3〕无理数的比拟大小:新人教版初中数学知识点总结(完好版)5其实角的大小与边的长短没有关系,角的大小决定于角的两条边张开的程度。角的静态定义具有公共端点的两条射线组成的图形叫做角(angle)。这个公共端点叫做角的顶点,这两条射线叫做角的两条边。角的动态定义一条射线绕着它的端点从一个位置旋转到另一个位置所形成的图形叫做角。所旋转射线的端点叫做角的顶点,开场位置的射线叫做角的始边,终止位置的射线叫做角的终边角的符号角的符号:∠角的种类在动态定义中,取决于旋转的方向与角度。角可以分为锐角、直角、钝角、平角、周角、负角、正角、优角、劣角、0角这10种。以度、分、秒为单位的角的度量制称为角度制。此外,还有密位制、弧度制等。锐角:大于0°,小于90°的角叫做锐角。直角:等于90°的角叫做直角。钝角:大于90°而小于180°的角叫做钝角。平角:等于180°的角叫做平角。优角:大于180°小于360°叫优角。劣角:大于0°小于180°叫做劣角,锐角、直角、钝角都是劣角。角周角:等于360°的角叫做周角。负角:按照顺时针方向旋转而成的角叫做负角。正角:逆时针旋转的角为正角。0角:等于零度的角。特殊角余角和补角:两角之和为90°那么两角互为余角,两角之和为180°那么两角互为补角。等角的余角相等,等角的补角相等。对顶角:两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做互为对顶角。两条直线相交,构成两对对顶角。互为对顶角的两个角相等。邻补角:两个角有一条公共边,它们的另一条边互为反向延长线,具有这种关系的两个角,互为邻补角。内错角:互相平行的两条直线直线,被第三条直线所截,假如两个角都在两条直线的内侧,并且在第三条直线的两侧,那么这样的一对角叫做内错角(alternateinteriorangle)。如:∠1和∠6,∠2和∠5同旁内角:两个角都在截线的同一侧,且在两条被截线之间,具有这样位置关系的一对角互为同旁内角。如:∠1和∠5,∠2和∠6同位角:两个角都在截线的同旁,又分别处在被截的两条直线同侧,具有这样位置关系的一对角叫做同位角(correspondingangles):∠1和∠8,∠2和∠7外错角:两条直线被第三条直线所截,构成了八个角。假如两个角都在两条被截线的外侧,并且在截线的两侧,那么这样的一对角叫做外错角。例如:∠4与∠7,∠3与∠8。同旁外角:两个角都在截线的同一侧,且在两条被截线之外,具有这样位置关系的一对角互为同旁外角。如:∠4和∠8,∠3和∠7终边一样的角:具有共同始边和终边的角叫终边一样的角。与角a终边一样的角属于集合:A{bb=k_360+a,k∈Z}表示角度制;B{bb=2kπ+a,k∈Z}表示弧度制新人教版初中数学知识点总结(完好版)6一元一次方程定义通过化简,只含有一个未知数,且含有未知数的最高次项的次数是一的等式,叫一元一次方程。通常形式是ax+b=0(a,b为常数,且a≠0)。一元一次方程属于整式方程,即方程两边都是整式。一元指方程仅含有一个未知数,一次指未知数的次数为1,且未知数的系数不为0。我们将ax+b=0(其中x是未知数,a、b是数,并且a≠0)叫一元一次方程的标准形式。这里a是未知数的系数,b是常数,x的次数必须是1。即一元一次方程必须同时满足4个条件:⑴它是等式;⑵分母中不含有未知数;⑶未知数最高次项为1;⑷含未知数的项的系数不为0。一元一次方程的五个核心问题一、什么是等式?1+1=1是等式吗?一个等式中,假如等号多于一个,叫做连等式,连等式可以化为一组只含有一个等号的等式。等式与代数式不同,等式中含有等号,代数式中不含等号。等式有两个重要性质1)等式的两边都加上或减去同一个数或同一个整式,所得结果仍然是一个等式;(2)等式的两边都乘以或除以同一个数除数不为零,所得结果仍然是一个等式。二、什么是方程,什么是一元一次方程?含有未知数的等式叫做方程,如2x-3=8,x+y=7等。判断一个式子是否是方程,只需看两点:一是不是等式;二是否含有未知数,两者缺一不可。只含有一个未知数,并且含未知数的式子都是整式,未知数的次数是1,系数不是0的方程叫做一元一次方程。其标准形式是ax+b=0(a不为0,a,b是数),值得注意的是1)一个整式方程的"元"和"次"是将这个方程化成最简形式后才能断定的。如方程2y2+6=3x+2y2,形式上是二元二次方程,但化简后,它实际上是一个一元一次方程。(2)整式方程分母中不含有未知数。判断是否为整式方程,是不能先将它化简的如方程x+1/x=2+1/x,因为它的分母中含有未知数x,所以,它不是整式方程。假如将上面的方程进展化简,那么为x=2,这时再去作判断,将得到错误的结论。但凡谈到次数的方程,都是指整式方程,即方程的两边都是整式。一元一次方程是整式方程中元数最少且次数最低的方程。三、等式有什么牛掰的根本性质吗?将方程中的某些项改变符号后,从方程的一边移到另一边的变形叫做移项,移项的根据是等式的根本性质1。移项时不一定要把含未知数的项移到等式的左边。如解方程3x-2=4x-5时就可以把含未知数的项移到右边,而把常数项移到左边,这样会显得简便些。去分母,将未知数的系数化为1,那么是根据等式的根本性质2进展的。四、等式一定是方程吗?方程一定是等式吗?等式与方程有很多一样之处。如都是用等号连接的,等号左、右两边都是代数式,但它们还是有区别的。方程仅是含有未知数的等式,是等式中的特例。就是说,等式包含方程;反过来,方程并不包含所有的等式。如,13+5=18,18-13=5都属于等式,但它们并不是方程。因此,等式一定是方程的说法是不对的。五、"解方程"与"方程的解"是一回事儿吗?方程的解是使方程左、右两边相等的未知数的取值。而解方程是求方程的解或判断方程无解的过程。即方程的解是结果,而解方程是一个过程。方程的解中的"解"是名词,而解方程中的"解"是动词,二者不能混淆。新人教版初中数学知识点总结(完好版)7动点与函数图象问题常见的四种类型:1、三角形中的动点问题:动点沿三角形的边运动,根据问题中的常量与变量之间的关系,判断函数图象.2、四边形中的动点问题:动点沿四边形的边运动,根据问题中的常量与变量之间的关系,判断函数图象.3、圆中的动点问题:动点沿圆周运动,根据问题中的常量与变量之间的关系,判断函数图象.4、直线、双曲线、抛物线中的动点问题:动点沿直线、双曲线、抛物线运动,根据问题中的常量与变量之间的关系,判断函数图象.图形运动与函数图象问题常见的三种类型:1、线段与多边形的运动图形问题:把一条线段沿一定方向运动经过三角形或四边形,根据问题中的常量与变量之间的关系,进展分段,判断函数图象.2、多边形与多边形的运动图形问题:把一个三角形或四边形沿一定方向运动经过另一个多边形,根据问题中的常量与变量之间的关系,进展分段,判断函数图象.3、多边形与圆的运动图形问题:把一个圆沿一定方向运动经过一个三角形或四边形,或把一个三角形或四边形沿一定方向运动经过一个圆,根据问题中的常量与变量之间的关系,进展分段,判断函数图象.动点问题常见的四种类型:1、三角形中的动点问题:动点沿三角形的边运动,通过全等或相似,探究构成的新图形与原图形的边或角的关系.2、四边形中的动点问题:动点沿四边形的边运动,通过探究构成的新图形与原图形的全等或相似,得出它们的边或角的关系.3、圆中的动点问题:动点沿圆周运动,探究构成的新图形的边角等关系.4、直线、双曲线、抛物线中的动点问题:动点沿直线、双曲线、抛物线运动,探究是否存在动点构成的三角形是等腰三角形或与图形相似等问题.总结反思:此题是二次函数的综合题,考察了待定系数法求二次函数的解析式,一次函数的解析式,三角形全等的断定和性质,等腰直角三角形的性质,平行线的性质等,数形结合思想的应用是解题的关键.解答动态性问题通常是对几何图形运动过程有一个完好、明晰的认识,开掘“动”与“静”的内在联络,寻求变化规律,从变中求不变,从而到达解题目的.解答函数的图象问题一般遵循的步骤:1、根据自变量的取值范围对函数进展分段.2、求出每段的解析式.3、由每段的解析式确定每段图象的形状.对于用图象描绘分段函数的实际问题,要抓住以下几点:1、自变量变化而函数值不变化的图象用程度线段表示.2、自变量变化函数值也变化的增减变化情况.3、函数图象的最低点和最高点.新人教版初中数学知识点总结(完好版)8定义对应角相等,对应边成比例的两个三角形叫做相似三角形比值与比的概念比值是一个详细的数字如:AB/EF=2而比不是一个详细的数字如:AB/EF=2:1断定方法证两个相似三角形应该把表示对应顶点的字母写在对应的位置上。假如是文字语言的“△ABC与△DEF相似”,那么就说明这两个三角形的对应顶点可能没有写在对应的位置上,而假如是符号语言的“△ABC∽△DEF”,那么就说明这两个三角形的对应顶点写在了对应的位置上。方法一(预备定理)平行于三角形一边的直线截其它两边所在的直线,截得的三角形与原三角形相似。(这是相似三角形断定的定理,是以下断定方法证明的根底。这个引理的证明方法需要平行线与线段成比例的证明)方法二假如一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。方法三假如两个三角形的两组对应边成比例,并且相应的夹角相等,那么这两个三角形相似方法四假如两个三角形的三组对应边成比例,那么这两个三角形相似方法五(定义)对应角相等,对应边成比例的两个三角形叫做相似三角形三个根本型Z型A型反A型方法六两个直角三角形中,斜边与直角边对应成比例,那么两三角形相似。一定相似的三角形1、两个全等的三角形(全等三角形是特殊的相似三角形,相似比为1:1)2、两个等腰三角形(两个等腰三角形,假如其中的任意一个顶角或底角相等,那么这两个等腰三角形相似。)3、两个等边三角形(两个等边三角形,三角都是60度,且边边相等,所以相似)4、直角三角形中由斜边的高形成的三个三角形(母子三角形)图形的学习需要大家对于知识的详细理解和浸透,而不是一带而过。新人教版初中数学知识点总结(完好版)9诱导公式的本质所谓三角函数诱导公式,就是将角n(/2)的三角函数转化为角的三角函数。常用的诱导公式公式一:设为任意角,终边一样的角的同一三角函数的值相等:sin(2k)=sinkzcos(2k)=coskztan(2k)=tankzcot(2k)=cotkz公式二:设为任意角,的三角函数值与的.三角函数值之间的关系:sin=-sincos=-costan=tancot=cot公式三:任意角与-的三角函数值之间的关系:sin(-)=-sincos(-)=costan(-)=-tancot(-)=-cot公式四:利用公式二和公式三可以得到与的三角函数值之间的关系:sin=sincos=-costan=-tancot=-cot新人教版初中数学知识点总结(完好版)101、一元二次方程解法:(1)配方法:(X±a)2=b(b≥0)注:二次项系数必须化为1(2)公式法:aX2+bX+C=0(a≠0)确定a,b,c的值,计算b2-4ac≥0假设b2-4ac>0那么有两个不相等的实根,假设b2-4ac=0那么有两个相等的实根,假设b2-4ac新人教版初中数学知识点总结(完好版)11①直线和圆无公共点,称相离。AB与圆O相离,d>r。②直线和圆有两个公共点,称相交,这条直线叫做圆的割线。AB与⊙O相交,d③直线和圆有且只有一公共点,称相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点。AB与⊙O相切,d=r。(d为圆心到直线的间隔)平面内,直线Ax+By+C=0与圆x2+y2+Dx+Ey+F=0的位置关系判断一般方法是:1.由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入x2+y2+Dx+Ey+F=0,即成为一个关于x的方程假如b2-4ac>0,那么圆与直线有2交点,即圆与直线相交。假如b2-4ac=0,那么圆与直线有1交点,即圆与直线相切。假如b2-4ac新人教版初中数学知识点总结(完好版)12一、根本知识一、数与代数A、数与式:1、有理数:①整数→正整数,0,负整数;②分数→正分数,负分数数轴:①画一条程度直线,在直线上取一点表示0〔原点〕,选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。②任何一个有理数都可以用数轴上的一个点来表示。③假如两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点间隔相等。④数轴上两个点表示的数,右边的总比左边的大。正数大于0,负数小于0,正数大于负数。绝对值:①在数轴上,一个数所对应的点与原点的间隔叫做该数的绝对值。②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。两个负数比拟大小,绝对值大的反而小。有理数的运算:带上符号进展正常运算。加法:①同号相加,取一样的符号,把绝对值相加。②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。③一个数与0相加不变。减法:减去一个数,等于加上这个数的相反数。乘法:①两数相乘,同号得正,异号得负,绝对值相乘。②任何数与0相乘得0。③乘积为1的两个有理数互为倒数。除法:①除以一个数等于乘以一个数的倒数。②0不能作除数。乘方:求N个一样因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数或指数。混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。2、实数无理数无理数:无限不循环小数叫无理数,例如:π=3.1415926…平方根:①假如一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。②假如一个数X的平方等于A,那么这个数X就叫做A的平方根。③一个正数有2个平方根;0的平方根为0;负数没有平方根。④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。立方根:①假如一个数X的立方等于A,那么这个数X就叫做A的立方根。②正数的立方根是正数、0的立方根是0、负数的立方根是负数。③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。实数:①实数分有理数和无理数。②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样;③每一个实数都可以在数轴上的一个点来表示。3、代数式代数式:单独一个数或者一个字母也是代数式。合并同类项:①所含字母一样,并且一样字母的指数也一样的项,叫做同类项;②把同类项合并成一项就叫做合并同类项。③在合并同类项时,我们把同类项的系数相加,字母和字母的指数不变。4、整式与分式整式:①数与字母的乘积的代数式叫单项式,几个单项式的和叫多项式,单项式和多项式统称整式。②一个单项式中,所有字母的指数和叫做这个单项式的次数。③一个多项式中,次数最高的项的次数叫做这个多项式的次数。整式运算:加减运算时,假如遇到括号先去括号,再合并同类项。幂的运算:AM+AN=A〔M+N〕〔AM〕N=A〔MN〕〔A/B〕N=AN/BN除法一样。整式的乘法:①单项式与单项式相乘,把他们的系数,一样字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式。②单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。③多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。公式两条:平方差公式:A2-B2=(A+B)(A-B);完全平方公式:(A+B)2=A2+2AB+B2;(A-B)2=A2-2AB+B2。整式的除法:①单项式相除,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,那么连同他的指数一起作为商的一个因式。②多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。分解因式:把一个多项式化成几个整式的积的形式,这种变化叫做把这个多项式分解因式。方法:提公因式法、运用公式法、分组分解法、十字相乘法。分式:①整式A除以整式B,假如除式B中含有分母,那么这个就是分式,对于任何一个分式,分母不为0。②分式的分子与分母同乘以或除以同一个不等于0的整式,分式的值不变。分式的运算:乘法:把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。除法:除以一个分式等于乘以这个分式的倒数。加减法:①同分母分式相加减,分母不变,把分子相加减。②异分母的分式先通分,化为同分母的分式,再加减。分式方程:①分母中含有未知数的方程叫分式方程。②使方程的分母为0的解称为原方程的增根。B、方程与不等式1、方程与方程组一元一次方程:①在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的方程叫一元一次方程。②等式两边同时加上或减去或乘以或除以〔不为0〕一个代数式,所得结果仍是等式。解一元一次方程的步骤:去分母,移项,合并同类项,未知数系数化为1。二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。二元一次方程组:两个二元一次方程组成的方程组叫做二元一次方程组。合适一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。二元一次方程组中各个方程的公共解,叫做这个二元一次方程组的解。解二元一次方程组的方法:代入消元法;加减消元法。一元二次方程:只有一个未知数,并且未知数的项的最高系数为2的方程:ax2+bx+c=0;1〕一元二次方程的二次函数的关系大家已经学过二次函数〔即抛物线〕了,对他也有很深的理解,好似解法,在图象中表示等等,其实一元二次方程也可以用二次函数来表示,其实一元二次方程也是二次函数的一个特殊情况,就是当Y=0的时候就构成了一元二次方程了。那假如在平面直角坐标系中表示出来,一元二次方程就是二次函数中,图像与X轴的交点。也就是该方程的解了2〕一元二次方程的解法大家知道,二次函数有顶点式〔-b/2a,4ac-b2/4a〕,这大家要记住,很重要,因为在上面已经说过了,一元二次方程也是二次函数的一局部,所以他也有自己的一个解法,利用他可以求出所有的一元一次方程的解(1〕配方法利用配方,使方程变为完全平方公式,在用直接开平方法去求出解(2)分解因式法提取公因式,套用公式法,和十字相乘法。在解一元二次方程的时候也一样,利用这点,把方程化为几个乘积的形式去解(3)公式法这方法也可以是在解一元二次方程的万能方法了,方程的根X1={-b+√[b2-4ac)]}/2a,X2={-b-√[b2-4ac)]}/2a3〕解一元二次方程的步骤:〔1〕配方法的步骤:先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式(2)分解因式法的步骤:把方程右边化为0,然后看看是否能用提取公因式,公式法〔这里指的是分解因式中的公式法〕或十字相乘,假如可以,就可以化为乘积的形式(3)公式法就把一元二次方程的各系数分别代入,这里二次项的系数为a,一次项的系数为b,常数项的系数为c4〕韦达定理利用韦达定理去理解,韦达定理就是在一元二次方程中,二根之和=-b/a,二根之积=c/a也可以表示为x1+x2=-b/a,x1x2=c/a。利用韦达定理,可以求出一元二次方程中的各系数,在题目中很常用5〕一元二次方程根的情况利用根的判别式去理解,根的判别式可在书面上可以写为“△”,读作“diaota”,而△=b2-4ac,这里可以分为3种情况:I当△>0时,一元二次方程有2个不相等的实数根;II当△=0时,一元二次方程有2个一样的实数根;III当△B,那么A+C>B+C;在不等式中,假如减去同一个数〔或加上一个负数〕,不等式符号不改向;例如:假如A>B,那么A-C>B-C;在不等式中,假如乘以同一个正数,不等式符号不改向;例如:假如A>B,那么A*C>B*C〔C>0〕;在不等式中,假如乘以同一个负数,不等号改向;例如:假如A>B,那么A*C新人教版初中数学知识点总结(完好版)13一、平移变换:1。概念:在平面内,将一个图形沿着某个方向挪动一定的间隔,这样的图形运动叫做平移。2。性质:〔1〕平移前后图形全等;〔2〕对应点连线平行或在同一直线上且相等。3。平移的作图步骤和方法:〔1〕分清题目要求,确定平移的方向和平移的间隔;〔2〕分析^p所作的图形,找出构成图形的关健点;〔3〕沿一定的方向,按一定的间隔平移各个关健点;〔4〕连接所作的各个关键点,并标上相应的字母;〔5〕写出结论。二、旋转变换:1。概念:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动叫做旋转。说明:〔1〕图形的旋转是由旋转中心和旋转的角度所决定的;〔2〕旋转过程中旋转中心始终保持不动。〔3〕旋转过程中旋转的方向是一样的。〔4〕旋转过程静止时,图形上一个点的旋转角度是一样的。⑤旋转不改变图形的大小和形状。2。性质:〔1〕对应点到旋转中心的间隔相等;〔2〕对应点与旋转中心所连线段的夹角等于旋转角;〔3〕旋转前、后的图形全等。3。旋转作图的步骤和方法:〔1〕确定旋转中心及旋转方向、旋转角;〔2〕找出图形的关键点;〔3〕将图形的关键点和旋转中心连接起来,然后按旋转方向分别将它们旋转一个旋转角度数,得到这些关键点的对应点;〔4〕按原图形顺次连接这些对应点,所得到的图形就是旋转后的图形。说明:在旋转作图时,一对对应点与旋转中心的夹角即为旋转角。常见考法〔1〕把平移旋转结合起来证明三角形全等;〔2〕利用平移变换与旋转变换的性质,设计一些题目。误区提醒〔1〕弄反了坐标平移的上加下减,左减右加的规律;〔2〕平移与旋转的性质没有掌握。新人教版初中数学知识点总结(完好版)14一、数与代数a、数与式:1、有理数:①整数→正整数/0/负整数②分数→正分数/负分数数轴:①画一条程度直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。②任何一个有理数都可以用数轴上的一个点来表示。③假如两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点间隔相等。④数轴上两个点表示的数,右边的总比左边的大。正数大于0,负数小于0,正数大于负数。绝对值:①在数轴上,一个数所对应的点与原点的间隔叫做该数的绝对值。②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。两个负数比拟大小,绝对值大的反而小。有理数的运算:加法:①同号相加,取一样的符号,把绝对值相加。②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。③一个数与0相加不变。减法:减去一个数,等于加上这个数的相反数。乘法:①两数相乘,同号得正,异号得负,绝对值相乘。②任何数与0相乘得0。③乘积为1的两个有理数互为倒数。除法:①除以一个数等于乘以一个数的倒数。
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年高职测绘地理信息技术(测绘地理信息实操)试题及答案
- 2025年大学(计算机科学与技术专业)人工智能应用试题及答案
- 2025年中职播音创作基础(播音发声训练)试题及答案
- 2025年大学大三(财务管理)投资项目评估综合测试试题及答案
- 2025年高职(会计)成本会计试题及答案
- 2025年大学物理学(量子物理基础)试题及答案
- 2025年大学水产养殖学(水产动物育种学)试题及答案
- 2025年中职第二学年(风力发电设备运行与维护)风机控制系统检修测试题及答案
- 2025年中职(城市燃气输配与应用)燃气管道安装阶段测试试题及答案
- 2025年大学第一学年(汉语言文学)写作基础训练试题及答案
- 工程维保三方合同
- 地铁车辆检修安全培训
- 造血干细胞移植临床应用和新进展课件
- GB/T 10802-2023通用软质聚氨酯泡沫塑料
- 黑布林英语阅读初一年级16《柳林风声》译文和答案
- 杰青优青学术项目申报答辩PPT模板
- 宿舍入住申请书
- 深圳中核海得威生物科技有限公司桐城分公司碳13-尿素原料药项目环境影响报告书
- 2023年全国高考体育单招文化考试数学试卷真题及答案
- GB/T 28733-2012固体生物质燃料全水分测定方法
- GB/T 14404-2011剪板机精度
评论
0/150
提交评论