离心率的求值或取值范围问题_第1页
离心率的求值或取值范围问题_第2页
离心率的求值或取值范围问题_第3页
离心率的求值或取值范围问题_第4页
离心率的求值或取值范围问题_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

PAGE2-/NUMPAGES12【高考地位】圆锥曲线的离心率是近年高考的一个热点,有关离心率的试题,究其原因,一是贯彻高考命题“以能力立意”的指导思想,离心率问题综合性较强,灵活多变,能较好反映考生对知识的熟练掌握和灵活运用的能力,能有效地反映考生对数学思想和方法的掌握程度;二是圆锥曲线是高中数学的重要内容,具有数学的实用性和美学价值,也是以后进一步学习的基础.【方法点评】方法1定义法解题模板:第一步根据题目条件求出的值第二步代入公式,求出离心率.例1.在平面直角坐标系中,若双曲线的离心率为,则的值为.【变式演练1】点P(-3,1)在椭圆()的左准线上,过点且方向为的光线,经直线反射后通过椭圆的左焦点,则这个椭圆的离心率为()ABCD方法2方程法解题模板:第一步设出相关未知量;第二步根据题目条件列出关于的方程;第三步化简,求解方程,得到离心率.例2.若圆与双曲线的一条渐近线相切,则此双曲线的离心率为()A.B.C.2D.例3.如图,,是双曲线的左、右两个焦点,若直线与双曲线交于、两点,且四边形为矩形,则双曲线的离心率为()A.B.C.D.【变式演练2】焦点在轴上的椭圆方程为,短轴的一个端点和两个焦点相连构成一个三角形,该三角形内切圆的半径为,则椭圆的离心率为()A.B.C.D.【变式演练3】【吉林省吉林市第一中学2015届高三3月“教与学”质检(理)试题】已知椭圆,为其左、右焦点,为椭圆上任一点,的重心为,内心,且有(其中为实数),椭圆的离心率() A. B. C. D.方法3借助平面几何图形中的不等关系解题模板:第一步根据平面图形的关系,如三角形两边之和大于第三边、折线段大于或等于直线段、对称的性质中的最值等得到不等关系,第二步将这些量结合曲线的几何性质用进行表示,进而得到不等式,第三步解不等式,确定离心率的范围.例4已知椭圆的中心在,右焦点为,右准线为,若在上存在点,使线段的垂直平分线经过点F,则椭圆的离心率的取值范围是()A.B.C.D.【变式演练4】已知椭圆与圆,若在椭圆上存在点P,使得由点P所作的圆的两条切线互相垂直,则椭圆的离心率的取值范围是()A.B.C.D.方法4借助题目中给出的不等信息解题模板:第一步找出试题本身给出的不等条件,如已知某些量的范围,存在点或直线使方程成立,的范围等;第二步列出不等式,化简得到离心率的不等关系式,从而求解.例5如图,椭圆的中心在坐标原点,焦点在轴上,,,,为椭圆的顶点,为右焦点,延长与交于点,若为钝角,则该椭圆的离心率的取值范围是()A.B.C.D.【变式演练5】设双曲线的一个焦点为F,虚轴的一个端点为B,焦点F到一条渐近线的距离为d,若,则双曲线离心率的取值范围是()A.B.C.D.方法5借助函数的值域求解范围解题模板:第一步根据题设条件,如曲线的定义、等量关系等条件建立离心率和其他一个变量的函数关系式;第二步通过确定函数的定义域;第三步利用函数求值域的方法求解离心率的范围.例6.已知椭圆与双曲线有相同的焦点,则椭圆的离心率的取值范围为()A.B.C.D.【变式演练6】是经过双曲线焦点且与实轴垂直的直线,是双曲线的两个顶点,若在上存在一点,使,则双曲线离心率的最大值为()A.B.C.D.【高考再现】1.【2016高考新课标2理数】已知是双曲线的左,右焦点,点在上,与轴垂直,,则的离心率为()(A)(B)(C)(D)22.【2016高考浙江理数】已知椭圆C1:+y2=1(m>1)与双曲线C2:–y2=1(n>0)的焦点重合,e1,e2分别为C1,C2的离心率,则()A.m>n且e1e2>1B.m>n且e1e2<1C.m<n且e1e2>1D.m<n且e1e2<13.【2016高考新课标3理数】已知为坐标原点,是椭圆:的左焦点,分别为的左,右顶点.为上一点,且轴.过点的直线与线段交于点,与轴交于点.若直线经过的中点,则的离心率为()(A) (B) (C) (D)4.【2016高考江苏卷】如图,在平面直角坐标系中,是椭圆的右焦点,直线与椭圆交于两点,且,则该椭圆的离心率是▲.5.【2016高考山东理数】已知双曲线E:(a>0,b>0),若矩形ABCD的四个顶点在E上,AB,CD的中点为E的两个焦点,且2|AB|=3|BC|,则E的离心率是_______.6.【2016高考天津理数】(本小题满分14分)设椭圆()的右焦点为,右顶点为,已知,其中为原点,为椭圆的离心率.(Ⅰ)求椭圆的方程;(Ⅱ)设过点的直线与椭圆交于点(不在轴上),垂直于的直线与交于点,与轴交于点,若,且,求直线的斜率的取值范围.7.【2016高考浙江理数】(本题满分15分)如图,设椭圆(a>1).(I)求直线y=kx+1被椭圆截得的线段长(用a、k表示);(II)若任意以点A(0,1)为圆心的圆与椭圆至多有3个公共点,求椭圆离心率的取值范围.8.【2015高考湖北,理8】将离心率为的双曲线的实半轴长和虚半轴长同时增加个单位长度,得到离心率为的双曲线,则()A.对任意的, B.当时,;当时,C.对任意的, D.当时,;当时,9.【2015高考新课标2,理11】已知A,B为双曲线E的左,右顶点,点M在E上,∆ABM为等腰三角形,且顶角为120°,则E的离心率为()A.B.C.D.10.【2015高考湖南,理13】设是双曲线:的一个焦点,若上存在点,使线段的中点恰为其虚轴的一个端点,则的离心率为.11.【2015高考山东,理15】平面直角坐标系中,双曲线的渐近线与抛物线交于点,若的垂心为的焦点,则的离心率为.【反馈练习】1.【河南省开封市2017届高三上学期10月月考数学(理)试题】双曲线C:的左、右焦点分别为,,M,N两点在双曲线C上,且MN∥F1F2,,线段F1N交双曲线C于点Q,且,则双曲线C的离心率为A.2B.C.D.2.【河南省开封市2017届高三上学期10月月考数学(理)试题】过双曲线的左焦点,作圆的切线,切点为,延长交双曲线右支于点,若,则双曲线的离心率是.3.【湖南省郴州市2017届高三上学期第一次教学质量监测数学(理)试题】已知椭圆的左焦点关于直线的对称点在椭圆上,则椭圆的离心率是()A.B.C.D.4.【河北省沧州市第一中学2017届高三10月月考数学(理)试题】过椭圆的左焦点作轴的垂线交椭圆于点,为右焦点,若,则椭圆的离心率为()A.B.C.D.5.【广东省惠州市2017届第二次调研考试数学(理)试题】已知双曲线的一个焦点到一条渐近线的距离为(为双曲线的半焦距),则双曲线的离心率为()(A)(B)(C)(D)6.【河南省新乡市2017届高三上学期第一次调研测试数学(理)试题】已知双曲线,过双曲线的右焦点,且倾斜角为的直线与双曲线交地两点,是坐标原点,若,则双曲线的离心率为()A.B.C.D.7.【河南省天一大联考2016-2017学年高中毕业班阶段性测试(二)数学(理)试题】过双曲线的右焦点且垂直于轴的直线与双曲线交于,两点,与双曲线的渐进线交于,两点,若,则双曲线离心率的取值范围为()A.B.C.D.8.【山西省临汾一中、忻州一中、长治二中等五校2017届高三上学期第二次联考数学(理)试题】直线与双曲线的左支、右支分别交于两点,为坐标原点,且为等腰直角三角形,则该双曲线的离心率为()A.B.C.D.9.【广西南宁二中、柳州高中、玉林高中2017届高三8月联考,9】若双曲线()的左、右焦点分别为,且线段被抛物线的焦点分成的两段,则双曲线的离心率为()A.B.C.D.10.【湖北省黄石市2017届高三年级九月份调研,20】本小题满分12分)已知椭圆过点两点.(1)求椭圆的方程及离心率;(2)设为第三象限内一点且在椭圆上,直线与轴交于点,直线与轴交于点,求证:四边形的面积为定值.10.【广西梧州市2017届高三上学期摸底联考数学(理)试题】已知椭圆的左、右焦点分别为,过且与轴垂直的直线交椭圆于两点,直线与椭圆的另一个交点为,若,则椭圆的离心率为()A.B.C.D.11.【河南百校联考2017届高三9月质检,16】已知双曲线的左、右焦点分别为,是圆与位于轴上方的两个交点,且,则双曲线的离心率为______________.12.【山东省实验中学2017届高三第一次诊,15】过双曲线(,)的右焦点作渐进线的垂线,设垂足为(为第一象限的点),延长交抛物线()于点,其中该双曲线与抛物线有一个共同的焦点,若,则双曲线的离心率的平方为.13.【云南师范大学附属中学2016届月考、理】设椭圆E:的右顶点为A、右焦点为F,B为椭圆E在第二象限上的点,直线BO交椭圆E于点C,若直线BF平分线段AC,则椭圆E的离心率是14.【广东省广州市荔湾区2016届高三调研测试、理】如图,、是双曲线的左、右焦点,过的直线与双曲线的左右两支分别交于点、.若为等边三角形,则双曲线的离心率为A.4B.C.D.15.【辽宁省五校协作体2016届高三上学期期初考试数学、理】已知分别为双曲线的左、右焦点,P为双曲线右支上的任意一点,若的最小值为8,则双曲线的离心率的取值范围是()A.B.C.D.16.【东北师大附中、吉林市第一中学校等2016届高三五校联考、理】已知双曲线与函数的图象交于点.若函数在点处的切线过双曲线左焦点,则双曲线的离心率是()A. B. C. D.17.【

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论