高考导数讲义一零点问题_第1页
高考导数讲义一零点问题_第2页
高考导数讲义一零点问题_第3页
高考导数讲义一零点问题_第4页
高考导数讲义一零点问题_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

高考导数讲义一:零点问题例1、设函数(I)求曲线在点处的切线方程;(II)设,若函数有三个不同零点,求c的取值范围;(III)求证:是有三个不同零点的必要而不充分条件.解:(I)由,得.因为,,所以曲线在点处的切线方程为.(II)当时,,所以.令,得,解得或.与在区间上的情况如下:所以,当且时,存在,,,使得.由的单调性知,当且仅当时,函数有三个不同零点.(III)当时,,,此时函数在区间上单调递增,所以不可能有三个不同零点.当时,只有一个零点,记作.当时,,在区间上单调递增;当时,,在区间上单调递增.所以不可能有三个不同零点.综上所述,若函数有三个不同零点,则必有.故是有三个不同零点的必要条件.当,时,,只有两个不同所以不是有三个不同零点的充分条件.因此是有三个不同零点的必要而不充分条件.例2.设函数,.(I)求的单调区间和极值;(II)证明:若存在零点,则在区间上仅有一个零点.【答案】(I)单调递减区间是,单调递增区间是;极小值;(II)证明详见解析.【解析】试题分析:本题主要考查导数的运算、利用导数判断函数的单调性、利用导数求函数的极值和最值、函数零点问题等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.(I)先对求导,令解出,将函数的定义域断开,列表,分析函数的单调性,所以由表格知当时,函数取得极小值,同时也是最小值;(II)利用第一问的表,知为函数的最小值,如果函数有零点,只需最小值,从而解出,下面再分情况分析函数有几个零点.试题解析:(Ⅰ)由,()得.由解得.与在区间上的情况如下:(I)讨论f(x)的单调性;(II)若f(x)有两个零点,求的取值范围.【解析】(Ⅰ).(i)当时,则当时,;当时,故函数在单调递减,在单调递增.(ii)当时,由,解得:或①若,即,则,故在单调递增.②若,即,则当时,;当时,故函数在,单调递增;在单调递减.③若,即,则当时,;当时,;故函数在,单调递增;在单调递减.(Ⅱ)(i)当时,由(Ⅰ)知,函数在单调递减,在单调递增.又∵,取实数满足且,则∴有两个零点.(ii)若,则,故只有一个零点.(iii)若,由(I)知,当,则在单调递增,又当时,,故不存在两个零点;当,则函数在单调递增;在单调递减.又当时,,故不存在两个零点.综上所述,的取值范围是.例6.设为实数,函数.(1)若,求的取值范围;(2)讨论的单调性;(3)当时,讨论在区间内的零点个数.【答案】(1);(2)在上单调递增,在上单调递减;(3)当时,有一个零点;当时,有两个零点.【解析】试题分析:(1)先由可得,再对的取值范围进行讨论可得的解,进而可得的取值范围;(2)先写函数的解析式,再对的取值范围进行讨论确定函数的单调性;(3)先由(2)得函数的最小值,再对的取值范围进行讨论确定在区间内的零点个数.试题解析:(1),因为,所以,当时,,显然成立;当,则有,所以.所以.综上所述,的取值范围是.(2)对于,其对称轴为,开口向上,所以在上单调递增;对于,其对称轴为,开口向上,所以在上单调递减.综上所述,在上单调递增,在上单调递减.(3)由(2)得在上单调递增,在上单调递减,所以.(i)当时,,令,即().因为在上单调递减,所以而在上单调递增,,所以与在无交点.当时,,即,所以,所以,因为,所以,即当时,有一个零点.(ii)当时,,当时,,,而在上单调递增,当时,.下面比较与的大小因为所以结合图象不难得当时,与有两个交点.综上所述,当时,有一个零点;当时,有两个零点.考点:1、绝对值不等式;2、函数的单调性;3、函数的最值;4、函数的零点.【名师点晴】本题主要考查的是绝对值不等式、函数的单调性、函数的最值和函数的零点,属于难题.零点分段法解绝对值不等式的步骤:=1\*GB3①求零点;=2\*GB3②划区间,去绝对值号;=3\*GB3③分别解去掉绝对值的不等式;=4\*GB3④取每段结果的并集,注意在分段时不要遗漏区间的端点值.判断函数的单调性的方法:=1\*GB3①基本初等函数的单调性;=2\*GB3②导数法.判断函数零点的个数的方法:=1\*GB3①解方程法;=2\*GB3②图象法.例7.已知函数f(x)=-2lnx+x2-2ax+a2,其中a>0.(Ⅰ)设g(x)为f(x)的导函数,讨论g(x)的单调性;(Ⅱ)证明:存在a∈(0,1),使得f(x)≥0恒成立,且f(x)=0在区间(1,+∞)内有唯一解.【解析】(Ⅰ)由已知,函数f(x)的定义域为(0,+∞)g(x)=f'(x)=2(x-1-lnx-a)所以g'(x)=2-当x∈(0,1)时,g'(x)<0,g(x)单调递减当x∈(1,+∞)时,g'(x)>0,g(x)单调递增(Ⅱ)由f'(x)=2(x-1-lnx-a)=0,解得a=x-1-lnx令Φ(x)=-2xlnx+x2-2x(x-1-lnx)+(x-1-lnx)2=(1+lnx)2-2xlnx则Φ(1)=1>0,Φ(e)=2(2-e)<0于是存在x0∈(1,e),使得Φ(x0)=0令a0=x0-1-lnx0=u(x0),其中u(x)=x-1-lnx(x≥1)由u'(x)=1-≥0知,函数u(x)在区间(1,+∞)上单调递增故0=u(1)<a0=u(x0)<u(e)=e-2<1即a0∈(0,1)当a=a0时,有f'(x0)=0,f(x0)=Φ(x0)=0再由(Ⅰ)知,f'(x)在区间(1,+∞)上单调递增当x∈(1,x0)时,f'(x)<0,从而f(x)>f(x0)=0当x∈(x0,+∞)时,f'(x)>0,从而f(x)>f(x0)=0又当x∈(0,1]时,f(x)=(x-a0)2-2xlnx>0故x∈(0,+∞)时,f(x)≥0综上所述,存在a

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论