




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省合肥市曹庵中学2021-2022学年高二数学文上学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知等比数列中,,数列是等差数列,且,则等于A.16
B.8
C.4
D.2参考答案:B2.如图在正方体AC1中,直线BC1与平面A1BD所成的角的余弦值是()A. B. C. D.参考答案:B【考点】直线与平面所成的角.【分析】设正方体的棱长等于1,建立空间直角坐标系,得出D、B、C1、A1各点的坐标,从而得出、、的坐标,利用垂直向量数量积为零的方法建立方程组解出=(1,﹣1,﹣1)是平面A1BD的一个法向量,利用向量的夹角公式算出cos<,>的值,即得直线BC1与平面A1BD所成角的正弦值,最后利用同角三角函数关系可得直线BC1与平面A1BD所成角的余弦值.【解答】解:分别以DA、DC、DD1为x、y、z轴建立如图所示空间直角坐标系设正方体的棱长等于1,可得D(0,0,0),B(1,1,0),C1(0,1,1),A1(1,0,1),∴=(﹣1,0,1),=(﹣1,0,﹣1),=(﹣1,﹣1,0)设=(x,y,z)是平面A1BD的一个法向量,则,取x=1,得y=z=﹣1∴平面A1BD的一个法向量为=(1,﹣1,﹣1)设直线BC1与平面A1BD所成角为θ,则sinθ=|cos<,>|==∴cosθ==,即直线BC1与平面A1BD所成角的余弦值是.故选:B.【点评】本题给出正方体模型,求直线与平面所成角的余弦值,着重考查了正方体的性质、利用空间向量研究直线与平面所成角等知识,属于中档题.3.若直线y=x+b与曲线y=3﹣有公共点,则b的取值范围是()A.[,3] B.[,3] C.[﹣1,] D.[,]参考答案:A【考点】直线与圆的位置关系.【专题】计算题;直线与圆.【分析】曲线即(x﹣2)2+(y﹣3)2=4(1≤y≤3),表示以A(2,3)为圆心,以2为半径的一个半圆,由圆心到直线y=x+b的距离等于半径2,解得b.结合图象可得b的范围.【解答】解:如图所示:曲线y=3﹣,即(x﹣2)2+(y﹣3)2=4(1≤y≤3,0≤x≤4),表示以A(2,3)为圆心,以2为半径的一个半圆.由圆心到直线y=x+b的距离等于半径2,可得=2,∴b=1+2,或b=1﹣2.结合图象可得1﹣2≤b≤3,故选:A.【点评】本题主要考查直线和圆的位置关系,点到直线的距离公式,体现了数形结合的数学思想,属于中档题.4.设函数在(0,+)内有定义,对于给定的正数K,定义函数,取函数,恒有,则A.K的最大值为
B.K的最小值为
C.K的最大值为2
D.K的最小值为2参考答案:B略5.已知命题R,R,给出下列结论:①命题“”是真命题
②命题“”是假命题
③命题“”是真命题
④命题“”是假命题,
其中正确的是(
) A.②④
B.②③
C.③④
D.①②③参考答案:B6.通过随机询问110名性别不同的大学生是否爱好体育,得到如下的列联表:
男女总计爱好402060不爱好203050总计6050110
由公式算得:K2=≈7.8.附表:P(K2≥k0)00.050.0250.0100.0050.001k0
1.3232.7022.7063.8415.0246.6357.87910.828参照附表,得到的正确结论是()A.有99%以上的把握认为“爱好体育运动与性别有关”B.有99%以上的把握认为“爱好体育运动与性别无关”C.在犯错误的概率不超过0.1%的前提下,认为“爱好体育运动与性别有关”D.在犯错误的概率不超过0.1%的前提下,认为“爱好体育运动与性别无关”参考答案:A,则有99%以上的把握认为“爱好该项运动与性别有关”.本题选择A选项.点睛:独立性检验得出的结论是带有概率性质的,只能说结论成立的概率有多大,而不能完全肯定一个结论,因此才出现了临界值表,在分析问题时一定要注意这点,不可对某个问题下确定性结论,否则就可能对统计计算的结果作出错误的解释.7.在中,a=15,b=10,A=60°,则=(
)A.- B. C.- D.参考答案:D【分析】利用正弦定理即可得到,进而得到结果.【详解】由正弦定理得,考点:正弦定理解三角形8.已知椭圆C:+y2=1,点M1,M2…,M5为其长轴AB的6等分点,分别过这五点作斜率为k(k≠0)的一组平行线,交椭圆C于P1,P2,…,P10,则直线AP1,AP2,…,AP10这10条直线的斜率乘积为()A.﹣ B.﹣ C. D.﹣参考答案:B【考点】椭圆的简单性质.【专题】圆锥曲线的定义、性质与方程.【分析】利用椭圆的性质可得==﹣=﹣.及其椭圆的对称性可得,,进而得出答案.【解答】解:如图所示,由椭圆的性质可得==﹣=﹣.由椭圆的对称性可得,,∴=﹣,同理可得===﹣.∴直线AP1,AP2,…,AP10这10条直线的斜率乘积==﹣.故选:B.【点评】本题考查了椭圆的性质可得=﹣及椭圆的对称性,考查了推理能力和计算能力,属于难题.9.全称命题“所有被5整除的整数都是奇数”的否定是(
) A.所有被5整除的整数都不是奇数
B.所有奇数都不能被5整除 C.存在一个奇数,不能被5整除
D.存在一个被5整除的整数不是奇数参考答案:D略10.命题p:?x0∈R,x0≤2的否定是()A.¬p:?x∈R,x≤2 B.¬p:?x∈R,x>2 C.¬p:?x∈R,x>2 D.¬p:?x∈R,x≤2参考答案:C【考点】命题的否定.【分析】根据已知中的原命题,结合特称命题否定的方法,可得答案.【解答】解:命题p:?x0∈R,x0≤2的否定为¬p:?x∈R,x>2,故选:C【点评】本题考查的知识点是命题的否定,特称命题,难度不大,属于基础题.二、填空题:本大题共7小题,每小题4分,共28分11.在抛物线y2=﹣4x上求一点P,使其到焦点F的距离与到A(﹣2,1)的距离之和最小,则该点的坐标是.参考答案:(﹣,1)【考点】抛物线的简单性质.【分析】根据抛物线方程求得抛物线的焦点为F(﹣1,0)、准线为x=1.设点P在准线上的射影为Q,根据抛物线的定义得|PQ|+|PA|=|PF|+|PA|,利用平面几何知识得当A、P、Q三点共线时,这个距离之和达到最小值,此时P点的纵坐标为1,利用抛物线方程求出P的横坐标,从而可得答案.【解答】解:由抛物线方程为y2=﹣4x,可得2p=4,=1,∴焦点坐标为F(﹣1,0),准线方程为x=1.设点P在准线上的射影为Q,连结PQ,则根据抛物线的定义得|PF|=|PQ|,由平面几何知识,可知当A、P、Q三点共线时,|PQ|+|PA|达到最小值,此时|PF|+|PA|也达到最小值.∴|PF|+|PA|取最小值,点P的纵坐标为1,将P(x,1)代入抛物线方程,得12=﹣4x,解得x=﹣,∴使P到A、F距离之和最小的点P坐标为(﹣,1).故答案为:(﹣,1)12.图中的三个直角三角形是一个体积为20cm3的几何体的三视图,则______________.参考答案:略13.在的二项展开式中,x的系数为
。参考答案:-40,14.下列四种说法①在△ABC中,若∠A>∠B,则sinA>sinB;②等差数列{an}中,a1,a3,a4成等比数列,则公比为;③已知a>0,b>0,a+b=1,则的最小值为5+2;④在△ABC中,已知,则∠A=60°.正确的序号有.参考答案:①③④考点:命题的真假判断与应用.专题:计算题;等差数列与等比数列;解三角形;不等式的解法及应用.分析:运用三角形的边角关系和正弦定理,即可判断①;运用等差数列的通项公式和等比数列的性质,即可求得公比,进而判断②;运用1的代换,化简整理运用基本不等式即可求得最小值,即可判断③;运用正弦定理和同角的商数关系,结合内角的范围,即可判断④.解答:解:对于①在△ABC中,若∠A>∠B,则a>b,即有2RsinA>2RsinB,即sinA>sinB,则①正确;对于②等差数列{an}中,a1,a3,a4成等比数列,则有a32=a1a4,即有(a1+2d)2=a1(a1+3d),解得a1=﹣4d或d=0,则公比为=1或,则②错误;对于③,由于a>0,b>0,a+b=1,则=(a+b)(+)=5++≥5+2=5,当且仅当b=a,取得最小值,且为5+2,则③正确;对于④,在△ABC中,即为==,即tanA=tanB=tanC,由于A,B,C为三角形的内角,则有A=B=C=60°,则④正确.综上可得,正确的命题有①③④.故答案为:①③④.点评:本题考查正弦定理的运用,考查等差数列和等比数列的通项和性质,考查基本不等式的运用:求最值,考查运算能力,属于基础题和易错题.15.过抛物线C:y2=4x的焦点F作直线l将抛物线C于A、B,若|AF|=4|BF|,则直线l的斜率是
.参考答案:【考点】KN:直线与抛物线的位置关系.【分析】由抛物线方程求出抛物线的焦点坐标,设出直线l的方程,和抛物线方程联立,化为关于y的一元二次方程后利用根与系数的关系得到A,B两点纵坐标的和与积,结合|AF|=3|BF|,转化为关于直线斜率的方程求解.【解答】解:∵抛物线C方程为y2=4x,可得它的焦点为F(1,0),∴设直线l方程为y=k(x﹣1),由,消去x得y2﹣y﹣k=0.设A(x1,y1),B(x2,y2),可得y1+y2=,y1y2=﹣4①.∵|AF|=4|BF|,∴y1+4y2=0,可得y1=﹣4y2,代入①得﹣3y2=,且﹣4y22=﹣4,解得y2=±1,解,得k=±.故答案为:.16.比较大小:﹣﹣(填>、<、≥、≤中之一)参考答案:<略17.曲线上的任意一点P处切线的倾斜角的取值范围是______参考答案:【分析】求得函数的导数,得到,进而得出在点处切线的斜率,再利用斜率与倾斜角的关系,即可求解.【详解】由题意,函数,则,即曲线上的任意一点处切线的斜率,设直线的倾斜角为,即,又因为,所以,即曲线上的任意一点处切线的倾斜角的取值范围是.【点睛】本题主要考查了导数的几何意义的应用,其中解答中熟记导数的几何意义,再利用直线的斜率与倾斜角的关系,准确计算是解答的关键,着重考查了运算与求解能力,属于基础题.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题满分12分)已知是双曲线的左右焦点,是过的一条弦(、均在双曲线的左支上)。(1)若的周长为30,求.(2)若求的面积。参考答案:(1)由双曲线定义知,故有
……4分周长为,得.
……6分(2)在中,由余弦定理得
=
……9分,
……10分
……12分19.某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日至12月5日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如下资料:日
期12月1日12月2日12月3日12月4日12月5日温差x(°C)101113128发芽数y(颗)2325302616该农科所确定的研究方案是:先从这五组数据中选取2组,用剩下的3组数据求线性回归方程,再对被选取的2组数据进行检验.(1)求选取的2组数据恰好是不相邻2天数据的概率;(2)若选取的是12月1日与12月5日的两组数据,请根据12月2日至12月4日的数据,求出y关于x的线性回归方程;并预报当温差为90C时的种子发芽数.参考答案:【考点】回归分析的初步应用;线性回归方程;列举法计算基本事件数及事件发生的概率.【分析】(1)根据题意列举出从5组数据中选取2组数据共有10种情况,每种情况都是可能出现的,满足条件的事件包括的基本事件有6种.根据等可能事件的概率做出结果.(2)根据所给的数据,先做出x,y的平均数,即做出本组数据的样本中心点,根据最小二乘法求出线性回归方程的系数,写出线性回归方程并进行预报.【解答】解:(1)设抽到不相邻的两组数据为事件A,从5组数据中选取2组数据共有10种情况:(1,2)(1,3)(1,4)(1,5)(2,3)(2,4)(2,5)(3,4)(3,5)(4,5),…其中数据为12月份的日期数.每种情况都是可能出现的,事件A包括的基本事件有6种.∴P(A)=∴选取的2组数据恰好是不相邻2天数据的概率是…(2)由数据,求得,.…由公式,求得b=,a=﹣b=﹣3∴y关于x的线性回归方程为x﹣3.…由此可以预报当温差为90C时的种子发芽数为19或20颗.…20.如图,在四棱锥中,//,,,平面,.(Ⅰ)求证:平面;(Ⅱ)点为线段的中点,求直线与平面所成角的正弦值.参考答案:(法一)(Ⅰ)证明:以A为原点,建立空间直角坐标系,如图,
则又,平面
(Ⅱ)由(Ⅰ)知,平面的一个法向量为,
设直线与平面所成的角为,则,
所以直线与平面所成的角的正弦值为.
(法二)(Ⅰ)证明:设AC∩BD=O,∵CD∥AB,∴OB:OD=OA:OC=AB:CD=2
Rt△DAB中,DA=,AB=4,∴DB=,∴DO=DB=
同理,OA=CA=,∴DO2+OA2=AD2,即∠AOD=90o,∴BD⊥AC
又PA⊥平面ABCD,∴PA⊥BD
由AC∩PA=A,∴BD⊥平面PAC
(Ⅱ)解:连PO,取PO中点H,连QH,则QH∥BO,由(Ⅰ)知,QH⊥平面PAC∴∠QCH是直线QC与平面PAC所成的角.由(Ⅰ)知,QH=BO=,取OA中点E,则HE=PA=2,又EC=OA+OC=Rt△HEC中,HC2=HE2+EC2=∴Rt△QHC中,QC=,∴sin∠QCH=∴直线与平面所成的角的正弦值为.
略21.下列程序运行后,a,b,c
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 触电安全教育托班教案
- 合作社农业生产合作运营协议
- 行政管理经济法重点体系试题及答案
- 2025年海口市琼山区九年级中考语文一模试卷附答案解析
- 目标明确2025年中级经济师试题及答案
- 行政管理公共关系学职业发展试题及答案
- 项目经理安全b证考试试题及答案
- 职高本科考试试题及答案
- 节约粮食主题班会教育
- 班级工作计划整体资源
- 高效课堂新授课评价量化表
- 信和SDS2MS使用说明书
- 维修手册震旦218现场
- 画法几何与阴影透视复习题(DOC)
- 螺旋密封的设计及在流体机械中的应用
- 青岛市失业人员登记表
- 烧结机工程施工设计方案
- 《中国好声音》全国校园海选招商方案(冠名)
- 广西安全文明施工费使用管理细则桂建质新版
- 存货质押贷款业务管理规定
- 公路路面基层施工技术规范JTJ034-93条文说明
评论
0/150
提交评论