湖南省郴州市汾市中学2022-2023学年高一数学理测试题含解析_第1页
湖南省郴州市汾市中学2022-2023学年高一数学理测试题含解析_第2页
湖南省郴州市汾市中学2022-2023学年高一数学理测试题含解析_第3页
湖南省郴州市汾市中学2022-2023学年高一数学理测试题含解析_第4页
湖南省郴州市汾市中学2022-2023学年高一数学理测试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

付费下载

VIP免费下载

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖南省郴州市汾市中学2022-2023学年高一数学理测试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.c已知与的夹角为,若,,D为BC中点,则=(

A.

B.

C.7

D.18参考答案:A略2.定义集合运算:A⊙B={z︳z=xy(x+y),x∈A,y∈B},设集合A={0,1},B={2,3},则集合A⊙B的所有元素之和为(

)A.0

B.6

C.12

D.18参考答案:D3.一个扇形的弧长与面积的数值都是6,这个扇形中心角的弧度数是()A.1 B.2 C.3 D.4参考答案:C【考点】G8:扇形面积公式;G7:弧长公式.【分析】先根据扇形面积公式S=lr,求出r=2,再根据求出α.【解答】解:设扇形的半径为r,中心角为α,根据扇形面积公式S=lr得6=,∴r=2,又扇形弧长公式l=r?α,∴.故选C【点评】本题考查弧度制下扇形弧长、面积公式.牢记公式是前提,准确计算是保障.4.若,则(

A.0<a<b<1

B.0<b<a<1

C.a>b>1

D.b>a>1参考答案:B5.如图正方体ABCD﹣A1B1C1D1,M,N分别为A1D1和AA1的中点,则下列说法中正确的个数为()①C1M∥AC;②BD1⊥AC;③BC1与AC的所成角为60°;④B1A1、C1M、BN三条直线交于一点.A.1 B.2 C.3 D.4参考答案:C【考点】命题的真假判断与应用.【分析】根据平行的定义,可判断①;先证明AC⊥平面BDD1,可判断②;根据△A1BC1为等边三角形,可判断③;根据公理3判断出三线共点,可判断④【解答】解:∵正方体ABCD﹣A1B1C1D1,M,N分别为A1D1和AA1的中点,∴A1C1∥AC,C1M与A1C1相交,故①错误;BD⊥AC,DD1⊥AC,故AC⊥平面BDD1,故BD1⊥AC,故②正确;、连接BA1,则△A1BC1为等边三角形,即BC1与A1C1的所成角为60°;由①中A1C1∥AC,可得BC1与AC的所成角为60°,故③正确;④由MN∥AD1∥BC1,可得C1M、BN共面,则C1M、BN必交于一点,且该交点,必在B1A1上,故B1A1、C1M、BN三条直线交于一点,故④正确;故选:C【点评】本题以命题的真假判断与应用为载体,考查了空间直线与直线的位置关系,直线与平面的位置关系等知识点,难度中档.6.点在平面上作匀速直线运动,速度向量(即点的运动方向与相同,且每秒移动的距离为个单位).设开始时点的坐标为(-10,10),则5秒后点的坐标为()A.(-2,4)

B.(-30,25)

C.(10,-5)

D.(5,-10)参考答案:C7.我国古代数学名著《九章算术》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为()A.134石 B.169石 C.338石 D.1365石参考答案:B【考点】随机抽样和样本估计总体的实际应用.【分析】根据254粒内夹谷28粒,可得比例,即可得出结论.【解答】解:由题意,这批米内夹谷约为1534×≈169石,故选:B.8.在中,已知,,则B等于(

)A.

B.

C.

D.或参考答案:A9.△ABC中,c是a与b的等差中项,sinA,sinB,sinC依次为一等比数列的前n项,前2n项,前3n项的和,则cosC的值为()A. B. C. D.参考答案:C【考点】8M:等差数列与等比数列的综合.【分析】运用等差数列和等比数列的性质,结合正弦定理,可得a,b,c的关系,再由余弦定理计算即可得到所求值.【解答】解:c是a与b的等差中项,可得a+b=2c,①sinA,sinB,sinC依次为一等比数列的前n项,前2n项,前3n项的和,由等比数列的和的性质,可得sinA,sinB﹣sinA,sinC﹣sinB成等比数列,可得sinA(sinC﹣sinB)=(sinB﹣sinA)2,由正弦定理可得sinA=,sinB=,sinC=,代入,化简可得a(c﹣b)=(b﹣a)2,②由①②可得a(a+b﹣2b)=2(b﹣a)2,化简可得a=b或a=2b,若a=b,则a=b=c,由等比数列各项均不为0,可得a≠b;则a=2b,c=b,即有cosC===.故选:C.【点评】本题考查等差数列和等比数列中项的性质,考查正弦定理和余弦定理的运用,考查化简整理的运算能力,属于中档题.10.定义在R上的奇函数f(x),满足,且在(0,+∞)上单调递减,则xf(x)>0的解集为(

)A. B.C. D.参考答案:B【考点】奇偶性与单调性的综合.【专题】函数的性质及应用.【分析】由已知中f()=0,且在(0,+∞)上单调递减,可得f(﹣)=0,且在区间(﹣∞,0)上单调递减,分类讨论后,可得xf(x)>0的解集【解答】解:∵函数f(x)是奇函数,在(0,+∞)上单调递减,且f()=0,∴f(﹣)=0,且在区间(﹣∞,0)上单调递减,∵当x<0,当﹣<x<0时,f(x)<0,此时xf(x)>0当x>0,当0<x<时,f(x)>0,此时xf(x)>0综上xf(x)>0的解集为故选B【点评】本题主要考查函数的单调性和奇偶性的综合应用,体现了转化的数学思想,判断出f(﹣)=0,且在区间(﹣∞,0)上单调递减是解题的关键.二、填空题:本大题共7小题,每小题4分,共28分11.某校选修篮球课程的同学中,高一学生有30名,高二学生有40名,现用分层抽样的方法在这70名学生中抽取一个容量为n的样本,已知在高一学生中抽取了6人,则高二学生中国应抽取

.参考答案:8【考点】B3:分层抽样方法.【分析】根据分层抽样的定义建立比例关系即可得到结论.【解答】解:∵高一学生有30名,高二学生有40名,∴在高一学生中抽取了6人,则高二学生中国应抽取的人数为人,故答案为:8.12.已知数列{an}满足则=_________若数列{bn}满足,Sn为数列{bn}的前n项和,则Sn=

.参考答案:

13.将正偶数排列如下表,其中第行第个数表示为,例如,若,则▲

.参考答案:6114.对于集合A,B,定义运算:A﹣B={x|x∈A且x?B},A△B=(A﹣B)∪(B﹣A).若A={1,2},B={x||x|<2,x∈Z},则A△B=

.参考答案:{﹣1,0,2}【考点】子集与交集、并集运算的转换.【专题】计算题;新定义;集合思想;集合.【分析】由已知中A﹣B={x|x∈A且x?B},A△B=(A﹣B)∪(B﹣A),结合已知中集合A,B,代入可得答案.【解答】解:∵A={1,2},B={x||x|<2,x∈Z}={﹣1,0,1},∴A﹣B={2},B﹣A={﹣1,0},∴A△B={﹣1,0,2},故答案为:{﹣1,0,2}【点评】本题考查的知识点是集合的交集,并集,补集运算,难度不大,属于基础题.15.关于的方程有两个不等实根,则实数的取值范围是_______.参考答案:略16.已知一圆柱内接于球O,且圆柱的底面直径与母线长均为2,则球O的表面积为____.参考答案:17.函数y=sinxcosx+sinx+cosx的最大值是.参考答案:【考点】HW:三角函数的最值.【分析】利用sinx与cosx的平方关系,令sinx+cosx=t,通过换元,将三角函数转化为二次函数,求出对称轴,利用二次函数的单调性求出最值.【解答】解:令t=sinx+cosx=则∴sinxcosx=∴y==()对称轴t=﹣1∴当t=时,y有最大值故答案为三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知关于x的一次函数y=mx+n.(1)设集合P={﹣2,﹣1,1,2,3}和Q={﹣2,3},分别从集合P和Q中随机取一个数作为m和n,求函数y=mx+n是增函数的概率;(2)实数m,n满足条件求函数y=mx+n的图象经过一、二、三象限的概率.参考答案:【考点】CF:几何概型;CB:古典概型及其概率计算公式.【分析】(1)本小题是古典概型问题,欲求函数y=mx+n是增函数的概率,只须求出满足:使函数为增函数的事件空间中元素有多少个,再将求得的值与抽取的全部结果的个数求比值即得.(2)本小题是几何概型问题,欲求函数y=mx+n的图象经过一、二、三象限的概率,只须求出满足使函数图象过一、二、三象限的区域的面积,再将求得的面积值与整个区域的面积求比值即得.【解答】解:(1)抽取的全部结果所构成的基本事件空间为:Ω={(﹣2,﹣2),(﹣2,3),(﹣1,﹣2),(﹣1,3),(1,﹣2),(1,3),(2,﹣2),(2,3),(3,﹣2),(3,3)}共10个基本事件设使函数为增函数的事件空间为A:则A={(1,﹣2),(1,3),(2,﹣2),(2,3),(3,﹣2),(3,3)}有6个基本事件所以,(2)m、n满足条件m+n﹣1≤0,﹣1≤m≤1,﹣1≤n≤1的区域如图所示:使函数图象过一、二、三象限的(m,n)为区域为第一象限的阴影部分∴所求事件的概率为.19.(本题14分)函数,图象的一个最高点为,图象两条相邻的对称轴之间的距离为.(1)求函数的解析式;(2)设求的值.参考答案:(1),(2)或20.(本题满分13分)函数.(1)求的单调递增区间;(2)求使得0的的取值集合.参考答案:解:(1)令.………1分函数的单调递增区间是………2分由,得………5分设,,易知.所以的单调递增区间为.………8分(2)若,则,………9分由,得,………11分令,易知即使得0的的取值集合为。……13分21.(12分)函数f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0,0<φ<)的图象与x轴相邻两个交点间的距离为,且图象上一个最低点为M(,﹣2).(Ⅰ)求f(x)的解析式;(Ⅱ)求f(x)的单调递增区间;(Ⅲ)当x∈[,]时,求f(x)的值域.参考答案:【考点】正弦函数的图象.【分析】(Ⅰ)由周期求得ω,由最低点的坐标结合五点法作图求得A及φ的值,可得函数f(x)的解析式.(Ⅱ)由条件利用正弦函数的单调性,求得f(x)的单调递增区间.(Ⅲ)当x∈[,],利用正弦函数的定义域和值域,求得f(x)的值域.【解答】解:(Ⅰ)由图象与x轴相邻两个交点间的距离为,==,∴ω=2,再根据图象上一个最低点为M(,﹣2),可得A=2,2×+φ=,φ=,∴f(x)=2sin(2x+).(Ⅱ)令2kπ﹣≤2x+≤2kπ+,求得kπ﹣≤x≤kπ+,k∈Z;(Ⅲ)当x∈[,]时,≤2x+≤,∴sin(2x+)∈[﹣1,2],故函数的值域为[﹣1,2].【点评】本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,正弦函数的单调性,正弦函数的定义域和值域,属于基础题.22.已知f(α)=(1)化简f(α);(2)若α是第三象限角,且,求f(α)的值.参考答案:【考点】

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论