湖北省荆门市京山县实验高级中学高二数学理上学期期末试卷含解析_第1页
湖北省荆门市京山县实验高级中学高二数学理上学期期末试卷含解析_第2页
湖北省荆门市京山县实验高级中学高二数学理上学期期末试卷含解析_第3页
湖北省荆门市京山县实验高级中学高二数学理上学期期末试卷含解析_第4页
湖北省荆门市京山县实验高级中学高二数学理上学期期末试卷含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖北省荆门市京山县实验高级中学高二数学理上学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知双曲线的方程为,双曲线的一个焦点到一条渐近线的距离为(c为双曲线的半焦距长),则双曲线的离心率为

A. B. C. D.参考答案:B略2.椭圆和双曲线的公共焦点为F1,F2,P是两曲线的一个交点,那么|PF1|?|PF2|的值是()A.m﹣a B.m2﹣a2 C. D.参考答案:B【考点】圆锥曲线的共同特征.【分析】不妨设P在双曲线的右支上,则|PF1|+|PF2|=2m,|PF1|﹣|PF2|=2a,由此即可求得|PF1|?|PF2|的值.【解答】解:由题意,不妨设P在双曲线的右支上,则|PF1|+|PF2|=2m,|PF1|﹣|PF2|=2a∴|PF1|=m+a,|PF2|=m﹣a∴|PF1|?|PF2|=m2﹣a2故选B.【点评】本题考查椭圆、双曲线的标准方程,考查椭圆、双曲线的定义,属于基础题.3.复数z为纯虚数,若(3﹣i)z=a+i(i为虚数单位),则实数a的值为()A.﹣3 B.3 C.﹣ D.参考答案:D【考点】复数相等的充要条件.【专题】数系的扩充和复数.【分析】设出复数z,然后利用复数相等的充要条件,求解即可.【解答】解:设复数z=bi,b≠0,∴(3﹣i)z=a+i,化为(3﹣i)bi=a+i,即b+3bi=a+i,∴b=a=,故选:D.【点评】本题考查复数的基本运算,复数相等的充要条件的应用,考查计算能力.4.已知定义在R上的函数f(x)满足:y=f(x﹣1)的图象关于(1,0)点对称,且当x≥0时恒有f(x﹣)=f(x+),当x∈[0,2)时,f(x)=ex﹣1,则f=()A.1﹣e B.﹣1﹣e C.e﹣1 D.e+1参考答案:C【考点】3T:函数的值.【分析】根据图象的平移可知y=f(x)的图象关于(0,0)点对称,可得函数为奇函数,由题意可知当x≥0时,函数为周期为2的周期函数,可得f=f(1)﹣f(0),求解即可.【解答】解:∵y=f(x﹣1)的图象关于(1,0)点对称,∴y=f(x)的图象关于(0,0)点对称,∴函数为奇函数,∵当x≥0时恒有f(x+2)=f(x),∴函数为周期为2的周期函数,当x∈[0,2)时,f(x)=ex﹣1,∴f=f=f(1)﹣f(0)=(e﹣1)﹣0=e﹣1.故选:C.5.设抛物线y2=8x的焦点为F,过点F作直线l交抛物线于A、B两点,若线段AB的中点E到y轴的距离为3,则弦AB的长为()A.5 B.8 C.10 D.12参考答案:C【考点】抛物线的简单性质.【分析】根据抛物线方程可求得p的值,进而利用抛物线的定义可求得|AB|=x1+x2+4,根据线段AB的中点E到y轴的距离求得x1+x2的值,代入|AB|=x1+x2+4,求得答案.【解答】解:由抛物线方程可知p=4|AB|=|AF|+|BF|=x1++x2+=x1+x2+4由线段AB的中点E到y轴的距离为3得(x1+x2)=3∴|AB|=x1+x2+4=10故答案为:106.若抛物线的焦点与椭圆的右焦点重合,则的值为(

)A.-2

B.2

C.4

D.8参考答案:C7.已知关于x的不等式x2+bx+c<0(ab>1)的解集为空集,则T=的最小值为()A. B.2 C. 2D.4参考答案:D【考点】基本不等式;一元二次不等式的应用.【分析】由题意得:,,得.利用此式进行代换,将T化成,令ab﹣1=m,则m>0,利用基本不等式即可求出T的最小值.【解答】解:由题意得:,,得.∴,令ab﹣1=m,则m>0,所以.则的最小值为4.故选D.8.从一楼到二楼的楼梯共有级台阶,每步只能跨上1级或2级,走完这级台阶共有种走法,则下面猜想正确的是(

)A、

B、

C、

D、参考答案:A9.椭圆的两个焦点分别为、,且椭圆上一点到两个焦点的距离之和是20,则椭圆的方程为---

)A.

B.

C.

D.参考答案:B已知两个焦点的坐标分别是F1(-8,0),F2(8,0),可知椭圆的焦点在x轴上,且c=8,由椭圆的定义可得:2a=20,即a=10,由a,b,c的关系解得b==6∴椭圆方程是,故选B

10.以抛物线的焦点为圆心,且与双曲线的两条渐近线相切的圆的方程为__________________________.参考答案:二、填空题:本大题共7小题,每小题4分,共28分11.设表示不超过的最大整数,如.我们发现:;;;.......通过合情推理,写出一般性的结论▲▲▲(用含的式子表示)参考答案:略12.用秦九韶算法求多项式f(x)=12+35x-8x2+79x3+6x4+5x5+3x6的值,当x=-4时,v4的值为___________________________________.参考答案:22013.命题“”为假命题,则实数的取值范围为

.参考答案:14.采用系统抽样从含有8000个个体的总体(编号为0000,0001,…,,7999)中抽取一个容量为50的样本,已知最后一个入样编号是7900,则最前面2个入样编号是

参考答案:0060,022015.设为等差数列的前项和,=5,=4,则=;参考答案:略16.观察下列等式:照此规律,第n个等式可为

.参考答案:17.过点(2,2)且与﹣y2=1有相同渐近线的双曲线方程为

.参考答案:

【分析】设双曲线的方程是﹣y2=λ,把点(2,2)代入方程解得λ,从而得到所求的双曲线的方程.【解答】解:由题意可知,可设双曲线的方程是﹣y2=λ,(λ≠0,且λ≠1),把点(2,2)代入方程,得1﹣4=λ解得λ=﹣3,故所求的双曲线的方程是﹣y2=﹣3即,故答案为:.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知函数,其中常数满足(1)若,判断函数的单调性;(2)若,求时的的取值范围.参考答案:解:⑴当时,任意,则∵,,∴,函数在上是增函数。当时,同理函数在上是减函数。⑵

当时,,则;当时,,则。略19.已知P={x|a-4<x<a+4},Q={x|x2-4x+3<0},且x∈P是x∈Q的必要条件,求实数a的取值范围.参考答案:略20.在平面直角坐标系xoy中,已知椭圆的焦点为(﹣,0)(,0),离心率为.(1)求椭圆的方程;(2)若圆M:x2+(y﹣m)2=1上的点到椭圆上的点的最远距离为+1,求m的值;(3)过坐标原点作斜率为k的直线l交椭圆于P、Q两点,点N为椭圆上任意一点(异于点P,Q),设直线NP,NQ的斜率均存在且分别记为kNp,kNQ.证明:对任意k,恒有kNPkNQ=﹣.参考答案:(1)解:由题意得,解得a=2,b=1,∴椭圆方程为=1.(2)解:设圆M上任取一点S,椭圆上任取一点T,则ST≤MT+MS=MT+1,故转化为求圆心M到椭圆上点T的距离的最大值,即MT的最大值,设T(x,y),则MT2=x2+(y﹣m)2,又∵点T在椭圆上,∴,∴MT2=x2+(y﹣m)2=﹣3y2﹣2my+m2+4(﹣1≤y≤1),当﹣,即m≥3,此时y=﹣1,MT2取到最大值为m2+2m+1,∴(m+1)2=5,解得m=﹣1?[3,+∞),舍去,当﹣,即m≤﹣3时,此时y=1,MT2取到最大值为m2﹣2m+1,∴(m﹣1)2=5,解得m=1?(﹣∞,﹣3],舍去,当﹣1,即﹣3<m<3时,y=﹣,MT2取到最大值为,∴,解得,符合题意,∴m的值为±.(3)证明:根据题意知P,Q关于原点对称,∴,,∴kNP?kNQ==,又点P,N在椭圆上,∴,两式相减,得,∴对任意k,恒有kNPkNQ=﹣.考点:直线与圆锥曲线的综合问题.专题:圆锥曲线中的最值与范围问题.分析:(1)由题意得,由此能求出椭圆方程.(2)原题转化为求MT取最大值实数m的求解,设T(x,y),则MT2=x2+(y﹣m)2=﹣3y2﹣2my+m2+4(﹣1≤y≤1),由此利用分类讨论思想能求出m的值.(3)由已知得kNP?kNQ==,由此能证明对任意k,恒有kNPkNQ=﹣.解答:(1)解:由题意得,解得a=2,b=1,∴椭圆方程为=1.(2)解:设圆M上任取一点S,椭圆上任取一点T,则ST≤MT+MS=MT+1,故转化为求圆心M到椭圆上点T的距离的最大值,即MT的最大值,设T(x,y),则MT2=x2+(y﹣m)2,又∵点T在椭圆上,∴,∴MT2=x2+(y﹣m)2=﹣3y2﹣2my+m2+4(﹣1≤y≤1),当﹣,即m≥3,此时y=﹣1,MT2取到最大值为m2+2m+1,∴(m+1)2=5,解得m=﹣1?[3,+∞),舍去,当﹣,即m≤﹣3时,此时y=1,MT2取到最大值为m2﹣2m+1,∴(m﹣1)2=5,解得m=1?(﹣∞,﹣3],舍去,当﹣1,即﹣3<m<3时,y=﹣,MT2取到最大值为,∴,解得,符合题意,∴m的值为±.(3)证明:根据题意知P,Q关于原点对称,∴,,∴kNP?kNQ==,又点P,N在椭圆

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论