数阵与幻方讲座_第1页
数阵与幻方讲座_第2页
数阵与幻方讲座_第3页
数阵与幻方讲座_第4页
数阵与幻方讲座_第5页
已阅读5页,还剩29页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

讲座数阵与幻方1知识要点

幻方编排方法----------罗伯法:1居上行正中央,依次放在右角上,上出框时往下填,右出框时左边放,排重便在下格填,右上排重一个样。数阵分为封闭数阵和辐射数阵两种。要根据题目中给出的数字,和数阵中重复出现的数字,通过计算,确定重复数字,再来确定其他数字。

2例1将1-9这9个数,填入下面的方格中,使每行、每列、两条对角线上的三个数字的和都相等。3例1将1-9这9个数,填入下面的方格中,使每行、每列、两条对角线上的三个数字的和都相等。8163574924练习

将4-12这9个数,填入下面的方格中,使每行、每列、两条对角线上的三个数字的和都相等。5练习

将4-12这9个数,填入下面的方格中,使每行、每列、两条对角线上的三个数字的和都相等。1149681071256例2

在下图中的A、B、C、D、处填上适当的数,使下图成为一个三阶幻方。A12DB152016C117例2

在下图中的A、B、C、D、处填上适当的数,使下图成为一个三阶幻方。1912141015201618118练习在下图中的空格里填上适当的数,使每行、每列、两条对角线上的三个数字的和都相等。

9练习在下图中的空格里填上适当的数,使每行、每列、两条对角线上的三个数字的和都相等。

1361181012914710例题把1-16这十六个数,填入下面的方格中,使每行、每列、两条对角线上的四个数字的和都相等。11例题把1-16这十六个数,填入下面的方格中,使每行、每列、两条对角线上的四个数字的和都相等。1151441267981011513321612练习在下图中的每一个方格中都填入一个数字,使每行、每列、两条对角线上的四个数字都是1、2、3、4。13练习在下图中的每一个方格中都填入一个数字,使每行、每列、两条对角线上的四个数字都是1、2、3、4。123423414123341214例题4用“罗伯法”,用1-25作一个五阶幻方。15例题4用“罗伯法”,用1-25作一个五阶幻方。1724181523571416461320221012192131118252916练习用“罗伯法”,用12-36作一个五阶幻方。17练习用“罗伯法”,用12-36作一个五阶幻方。2835121926341618252715172431332123303214222936132018例题5

将自然数1—11填入下图的五个圆圈中,使得每条线上三个数之和相等而且最大。和最大是多少?19例题5

将自然数1—11填入下图的五个圆圈中,使得每条线上三个数之和相等而且最大。和最大是多少?20练习把1—7这个7个数分别填入图中,使每条线段上的3个○内数的和相等。21练习把1—7这个7个数分别填入图中,使每条线段上的3个○内数的和相等。123456722例6如下图,把1—8八个数分别填入小圆圈内。使每一个圆周上五个数的和都等于21。23例6如下图,把1—8八个数分别填入小圆圈内。使每一个圆周上五个数的和都等于21。2345618724练习把1,2,3,4,5,6填在图中的圆圈内,使每条边上的3个数之和都等于9。25练习把1,2,3,4,5,6填在图中的圆圈内,使每条边上的3个数之和都等于9。21345626例题7将1—8八个数填入图中的八个方格内,使上面四格、下面四格、左边四格、右边四格、中间四格、对角线四格和四角四格内四个数相加的和都是18。27例题7将1—8八个数填入图中的八个方格内,使上面四格、下面四格、左边四格、右边四格、中间四格、对角线四格和四角四格内四个数相加的和都是18。1234567828练习

把1-9九个数填入图中的“七一”内,使得每一横行、竖行的数字之和是13.29练习

把1-9九个数填入图中的“七一”内,使得每一横行、竖行的数字之和是13.21345678930例8、将1—13这13个自然数分别填入图中的各个○内,使每条线段上5个○内的和相等。并且两个六边形6个顶点上○内数的和也相等地。31例8、将1—13这13个自然数分别填入图中的各个○内,使每条线段上5个○内的和相等。并且两个六边形6个顶点上○内数的和也相等地。12345678910111

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论