




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021年广东省惠州市博罗县杨村中学高一数学文模拟试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.如图:三点在地面同一直线上,,从两点测得点仰角分别是,则点离地面的高度等于
(
)
A.
B.
C
D.
参考答案:A略2.设偶函数的定义域为R,当时,是增函数,则的大小关系是(
)A.>>
B.>>C.<<
D.<<参考答案:A略3.在△ABC中,AB=2,BC=1.5,∠ABC=120°,若使该三角形绕直线BC旋转一周,则所形成的几何体的体积是()A. B. C. D.参考答案:A【考点】LF:棱柱、棱锥、棱台的体积;L5:旋转体(圆柱、圆锥、圆台).【分析】所形成的几何体是以ACD为轴截面的圆锥中挖去了一个以ABD为轴截面的小圆锥后剩余的部分,故用大圆锥的体积减去小圆锥的体积,即为所求.【解答】解:如图:△ABC中,绕直线BC旋转一周,则所形成的几何体是以ACD为轴截面的圆锥中挖去了一个以ABD为轴截面的小圆锥后剩余的部分.∵AB=2,BC=1.5,∠ABC=120°,∴AE=ABsin60°=,BE=ABcos60°=1,V1==,V2==π,∴V=V1﹣V2=,故选:A.4.
参考答案:A
解析:阴影部分完全覆盖了C部分,这样就要求交集运算的两边都含有C部分5.已知函数f(2x-1)=,则f(-1)=A.9
B.0
C.4
D.-9参考答案:B6.有4个函数:①②③④,其中偶函数的个数是(A)(B)(C)(D)参考答案:C略7.在各项均不为零的等差数列{an}中,若,则等于(
)A.
4030
B.2015
C.2015
D.
4030参考答案:A8.函数的图象是(
)参考答案:A9.已知关于某设各的使用年限x(单位:年)和所支出的维修费用y(单位:万元)有如下的统计资料,x23456y2.23.85.56.57.0由上表可得线性回归方程,若规定当维修费用y>12时该设各必须报废,据此模型预报该设各使用年限的最大值为()A.7 B.8 C.9 D.10参考答案:C【考点】线性回归方程.【专题】计算题;函数思想;综合法;函数的性质及应用.【分析】求出,代入回归方程求出,令≤12解出x,【解答】解:=(2+3+4+5+6)=4,=(2.2+3.8+5.5+6.5+7)=5.∴5=4+0.08,解得=1.23,∴=1.23x+0.08,令1.23x+0.08≤12解得x≤≈9.7.∴该设备的使用年限最大为9年.故选C.【点评】本题考查了线性回归方程的求解及数值估计,属于基础题.10.若cos(2π-α)=,则sin(-α)等于(
)A.-
B.-
C.
D.±参考答案:A【分析】利用诱导公式化简条件与结论,即可得到结果.【详解】由cos(2π-α)=,可得cos,又sin-
故选:A【点睛】本题考查利用诱导公式化简求值,考查恒等变形的能力,属于基础题.二、填空题:本大题共7小题,每小题4分,共28分11.sin960°的值为.参考答案:略12.执行如下的程序,若输入的n=﹣3,则输出的m=.参考答案:3【考点】程序框图.【专题】计算题;分类讨论;分析法;算法和程序框图.【分析】模拟执行程序,可得程序的功能是计算并输出m=的值,从而可得当n=﹣3时,m=﹣2×(﹣3)﹣3=3.【解答】解:模拟执行程序,可得程序的功能是计算并输出m=的值,∵当n=﹣3时,﹣3<﹣3不成立,∴m=﹣2×(﹣3)﹣3=3.故答案为:3.【点评】本题主要考查了选择结构的程序算法,模拟执行程序,得程序的功能是解题的关键,属于基础题.13.已知数列{an}的通项公式为,前n项和为Sn,则__________.参考答案:1011根据题意得到,将n赋值分别得到将四个数看成是一组,每一组的和分别为:12,28,44……..可知每四组的和为等差数列,公差为16.前2021项公525组,再加最后一项为0.故前2021项和为(50512+)故答案为:1011.点睛:本题考查了递推关系的应用、分组求和问题、三角函数的性质,考查了推理能力与计算能力,属于中档题.解决等差等比数列的小题时,常见的思路是可以化基本量,解方程;利用等差等比数列的性质解决题目;还有就是如果题目中涉及到的项较多时,可以观察项和项之间的脚码间的关系,也可以通过这个发现规律。还可以直接列出一些项,直接找规律。归纳猜想。14.已知定义在R上的函数,若在上单调递增,则实数的取值范围是______▲_______参考答案:15.在△ABC中,角A,B,C所对的边分别为a,b,c,且满足,若△ABC的面积为,则ab=__参考答案:4【分析】由正弦定理化简已知等式可得,由余弦定理可得,根据同角三角函数基本关系式可得,进而利用三角形面积公式即可计算得解.【详解】,由正弦定理可得,,即:,由余弦定理可得,,可得,∵△ABC的面积为,可得,解得,故答案为4.【点睛】本题主要考查了正弦定理,余弦定理,同角三角函数基本关系式,三角形面积公式在解三角形中的综合应用,属于中档题.解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷.如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.16.实数x,y满足,则的最小值为.参考答案:【考点】7C:简单线性规划.【分析】由约束条件作出可行域,由的几何意义,即可行域内的动点与定点P(4,0)连线的斜率求得答案.【解答】解:由约束条件作出可行域如图,联立,解得A(1,2),的几何意义为可行域内的动点与定点P(4,0)连线的斜率,由图可知,的最小值为.故答案为:.17.不等式≤3.的解集为
参考答案:(-∞,-3]∪(-1,+∞)略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.二手车经销商小王对其所经营的某一型号二手汽车的使用年数x(0<x≤10)与销售价格y(单位:万元/辆)进行整理,得到如表的对应数据:使用年数246810售价16139.574.5
(1)试求y关于x的回归直线方程;(参考公式:,)(2)已知每辆该型号汽车的收购价格为万元,根据(1)中所求的回归方程,预测x为何值时,小王销售一辆该型号汽车所获得的利润z最大?参考答案:(1);(2)预测当时,销售利润取得最大值.试题分析:(1)由表中数据利用平均数公式计算,根据公式求出将样本中心点坐标代入回归方程求得,即可写出回归直线方程;(2)写出利润函数,利用二次函数的图象与性质求出时取得最大值.试题解析:(1)由已知:,,,,;所以回归直线的方程为(2),所以预测当时,销售利润取得最大值.19.(本小题满分12分)(普通班学生做)已知函数()的最小值正周期是.(1)求的值;(2)求函数的最大值,并且求使取得最大值的的集合.参考答案:(1)由题设,函数的最小正周期是,可得,所以.(2)由(1)知,.当,即时,取得最大值1,所以函数的最大值是,此时的集合为.20.已知向量,函数的最大值为6.(1)求A的值及函数图象的对称轴方程和对称中心坐标;(2)将函数y=f(x)的图象向左平移个单位,再将所得的图象上各点的横坐标缩短为原来的倍,纵坐标不变,得到函数y=g(x)的图象,求g(x)在上的值域.参考答案:【考点】平面向量数量积的运算;正弦函数的单调性;函数y=Asin(ωx+φ)的图象变换.【分析】(1)根据向量的数量积公式和三角形函数的化简求出f(x),再求出对称轴方程和对称中心坐标,(2)根据图象的变换可得g(x),再根据正弦函数的性质求出函数的值域.【解答】解:(1)∵,∴=Asinxcosx+cos2x=Asin(2x+),∵函数的最大值为6,∴A=6,∴对称轴方程为,对称中心坐标为;(2)∵函数y=f(x)的图象向左平移个单位,再将所得的图象上各点的横坐标缩短为原来的倍,纵坐标不变,∴,∵x∈,∴4x+∈[,],∴sinx∈[﹣,1],∴值域为[﹣3,6].21.已知向量,的夹角为,且,,求:(1);
(2).参考答案:略22.如图,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是菱形.(1)求证:BD⊥PC;(2)若平面PBC与平面PAD的交线为l,求证:BC∥l.
参考答案:(1)证明:连接AC,交BD于点O.∵四边形ABCD为菱形,所以
2分又∵PA⊥平面ABCD,BD平面ABCD,∴PA⊥BD又∵
PA∩AC=A,
PA平面PAC,
AC平面PAC∴,
又∵
∴
..........................................................................................................6分(2)∵四
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 食品添加剂安全性评估与合理使用在调味品行业的应用报告
- 小学教育信息化建设反思试题及答案
- 教育园区建设对2025年社会稳定风险评估与风险监测报告
- 机械装备制造业智能化升级与产品质量提升研究报告
- 教师教育教学改进表现的试题及答案
- 小学教师反思与校本培训的重要性试题及答案
- 山东石油化工学院《工程管理类软件应用含技术》2023-2024学年第一学期期末试卷
- 工业互联网平台安全升级之道:2025年漏洞扫描技术前瞻报告
- 曲阜远东职业技术学院《食品分析含实验》2023-2024学年第二学期期末试卷
- 市政公用工程法律法规试题及答案
- 设备维护工程师简历
- 2023版押品考试题库必考点含答案
- 挖孔桩基施工方案(水磨钻)
- 变电检修技能考试计算
- 国际经济法学(湘潭大学)智慧树知到答案章节测试2023年
- 以案说德发言四篇
- 大气污染控制工程课后题答案解析
- 临床试验伦理委员会伦理审查不同意见沟通的标准操作规程
- 梅毒诊疗指南(2023年)
- 高中物理3-3热学练习题(含答案)
- DB32-T 3916-2020建筑地基基础检测规程-(高清现行)
评论
0/150
提交评论