2022-2023学年黑龙江省哈尔滨市奔赛中学高三数学文模拟试题含解析_第1页
2022-2023学年黑龙江省哈尔滨市奔赛中学高三数学文模拟试题含解析_第2页
2022-2023学年黑龙江省哈尔滨市奔赛中学高三数学文模拟试题含解析_第3页
2022-2023学年黑龙江省哈尔滨市奔赛中学高三数学文模拟试题含解析_第4页
2022-2023学年黑龙江省哈尔滨市奔赛中学高三数学文模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年黑龙江省哈尔滨市奔赛中学高三数学文模拟试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.是三角形的一个内角,且,则方程所表示的曲线为(

A.焦点在x轴上的椭圆

B.焦点在y轴上的椭圆

C.焦点在x轴上的双曲线

D.焦点在y轴上的双曲线参考答案:C2.设x、y均是实数,i是虚数单位,复数(x﹣2y)+(5﹣2x﹣y)i的实部大于0,虚部不小于0,则复数z=x+yi在复平面上的点集用阴影表示为图中的()A. B. C. D.参考答案:A【考点】复数的代数表示法及其几何意义.【专题】数系的扩充和复数.【分析】由复数(x﹣2y)+(5﹣2x﹣y)i的实部大于0,虚部不小于0,可得,利用线性规划的知识可得可行域即可.【解答】解:∵复数(x﹣2y)+(5﹣2x﹣y)i的实部大于0,虚部不小于0,∴,由线性规划的知识可得:可行域为直线x=2y的右下方和直线的左下方,因此为A.故选:A.【点评】本题考查了复数的几何意义和线性规划的可行域,属于中档题.3.已知集合,则

(

)A.

B.

C.

D.参考答案:D4.若,则的定义域为(

)A.

B.

C.

D..参考答案:A略5.某几何体的三视图如图所示,则该几何体的体积为(

) A.6 B.2 C.3 D.3参考答案:D考点:由三视图求面积、体积.专题:空间位置关系与距离.分析:根据三视图得出几何体是一个三棱柱,求出它的底面积与高,即得体积.解答: 解:根据该几何体的三视图知,该几何体是一个平放的三棱柱;它的底面三角形的面积为S底面=×2×=,棱柱高为h=3;∴棱柱的体积为V棱柱=S底面h=×3=3;故选:D.点评:本题考查了根据三视图求几何体的体积的问题,解题的关键是由三视图得出几何体是什么几何体,从而作答.6.函数的单调减区间是A.

B.C.及

D.及参考答案:A7.(2012?重庆)设x∈R,向量=(x,1),=(1,﹣2),且⊥,则|+|=()A. B. C.2 D.10参考答案:B【考点】平面向量数量积的坐标表示、模、夹角.【专题】计算题.【分析】通过向量的垂直,求出向量,推出,然后求出模.【解答】解:因为x∈R,向量=(x,1),=(1,﹣2),且⊥,所以x﹣2=0,所以=(2,1),所以=(3,﹣1),所以|+|=,故选B.【点评】本题考查向量的基本运算,模的求法,考查计算能力.8.下列各组中的两个集合和,表示同一集合的是

A.

B.

C.

D.参考答案:D9.若则“”是“”

A.必要不充分条件

B.充分不必要条件

C.充要条件

D.既不充分与不必要条件参考答案:A略10.已知三棱柱ABC﹣A1B1C1的六个顶点都在球O的球面上,且侧棱AA1⊥平面ABC,若AB=AC=3,∠BAC==8,则球的表面积为()A.36π B.64π C.100π D.104π参考答案:C【考点】LG:球的体积和表面积.【分析】求出BC,可得△ABC外接圆的半径,从而可求该三棱柱的外接球的半径,即可求出三棱柱的外接球表面积.【解答】解:∵AB=AC=3,∠BAC=120°,∴BC=3,∴三角形ABC的外接圆直径2r==6,∴r=3,∵AA1⊥平面ABC,AA1=8,∴该三棱柱的外接球的半径R=5,∴该三棱柱的外接球的表面积为S=4πR2=4π×52=100π.故选C.二、填空题:本大题共7小题,每小题4分,共28分11.将一边长为的正方形沿对角线折起,形成三棱锥,其正视图与俯视图如图3所示,则侧视图的面积为______________源:.C参考答案:略12.已知圆的极坐标方程为,以极点为原点,极轴为轴的正半轴建立平面直角坐标系,则圆的直角坐标方程为_______________,若直线与圆相切,则实数的值为_____________.参考答案:;略13.已知i是虚数单位,则复数

.参考答案:结合复数的运算法则有:

.14.某校对高三年级1600名男女学生的视力状况进行调查,现用分层抽样的方法抽取一个容量是200的样本,已知样本中女生比男生少10人,则该校高三年级的女生人数是.参考答案:760考点:分层抽样方法.专题:应用题;概率与统计.分析:先计算出样本中高三年级的女学生人数,再根据分层抽样的性质计算出该校高三年级的女生的人数.解答:解:根据题意,设样本中高三年级的女生人数为x,则(x+10)+x=200,解得x=95,所以该校高三年级的女生人数是1600×200=760.故答案为:760.点评:本题考查分层抽样,先计算中样本中高三年级的男女学生的人数是解决本题的关键,属基础题.15.二项式的展开式中含的项的系数是(用数字作答).

参考答案:10略16.如果随机变量,且,则=

.参考答案:根据对称性可知,所以。17.在菱形ABCD中,,,E为CD的中点,则

.参考答案:-4因为菱形中,,为的中点,因为,所以.

三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.设△ABC的内角A,B,C的对边分别是a,b,c,已知A=,a=bcosC.(Ⅰ)求角C的大小;(Ⅱ)如图,在△ABC的外角∠ACD内取一点P,使PC=2,过点P作PM⊥CA于M,PN⊥CD于N,设线段PM,PN的长分别为m,n,∠PCM=x,且,求f(x)=mn的最大值及相应x的值.参考答案:【考点】三角形中的几何计算;两角和与差的正弦函数;三角函数的最值.【专题】三角函数的求值;三角函数的图像与性质;解三角形.【分析】(Ⅰ)用正弦定理把a=bcosC化为sinA=sinBcosC,再用三角形的内角和定理与三角恒等变换,求出C的值;(Ⅱ)根据直角三角形中的边角关系,求出m、n,写出f(x)的解析式,利用三角函数求出f(x)的最大值以及对应的x的值.【解答】解:(Ⅰ)△ABC中,A=,a=bcosC,∴sinA=sinBcosC,即sin(B+C)=sinBcosC,∴sinBcosC+cosBsinC=sinBcosC,∴cosBsinC=0;又B、C∈(0,π),∴sinC≠0,cosB=0,∴B=,C=;(Ⅱ)△ABC的外角∠ACD=π﹣=,PC=2,且PM⊥CA,PN⊥CD,PM=m,PN=n,∠PCM=x,;∴m=2sinx,n=2sin(﹣x),∴f(x)=mn=4sinxsin(﹣x)=4sinx(sincosx﹣cossinx)=2sinxcosx+2sin2x=sin2x+(1﹣cos2x)=sin2x﹣cos2x+1=2sin(2x﹣)+1;∵<x<,∴<2x<π,∴<2x﹣<,∴sin(2x﹣)≤1,∴f(x)≤2+1=3,当2x﹣=,即x=时,f(x)取得最大值3.【点评】本题考查了三角形中的边角关系的应用问题,也考查了三角函数的恒等变换以及三角函数的图象与性质的应用问题,是综合性题目.19.互联网+时代的今天,移动互联快速发展,智能手机技术不断成熟,价格却不断下降,成为了生活中必不可少的工具中学生是对新事物和新潮流反应最快的一个群体之一逐渐地,越来越多的中学生开始在学校里使用手机手机特别是智能手机在让我们的生活更便捷的同时会带来些问题,同学们为了解手机在中学生中的使用情况,对本校高二年级100名同学使用手机的情况进行调查.针对调查中获得的“每天平均使用手机进行娱乐活动的时间”进行分组整理得到如图4的饼图、(注:图中(单位:小时)代表分组为)(1)求饼图中a的值;(2)假设同一组中的每个数据可用给定区间的中点值代替,试估计样本中的100名学生每天平均使用手机的平均时间在第几组?(只需写出结论)(3)从该校随机选取一名同学,能否根据题目中所给信息估计出这名学生每天平均使用手机进行娱乐活动小于3.5小时的概率,若能,请算出这个概率;若不能,请说明理由.参考答案:(1);(2)第4组;(3)若抽取的同学是高二年级的学生,则可以估计这名同学每天平均使用手机小于小时的概率大约为,若抽到高一、高三的同学则不能估计.(1)由饼图得.(2)假设同一组中的每个数据可用给定区间的中点值代替,估计样本中的100名学生每天平均使用手机的平均时间在第4组.(3)∵样本是从高二年级抽取的,根据抽取的样本只能估计该校高二年级学生每天使用手机进行娱乐活动的平均时间,不能估计全校学生情况,若抽取的同学是高二年级的学生,则可以估计这名同学每天平均使用手机小于小时的概率大约为,若抽到高一、高三的同学则不能估计.20.已知锐角△ABC的内角A,B,C的对边分别为a,b,c,且.(1)求sinA;(2)若,,求c.参考答案:(1)(2)【分析】(1)由正弦定理,得,进而则A可求;(2)解法一:由余弦定理得c的方程求解即可;解法二:正弦定理得,进而得,再利用正弦定理得c即可【详解】(1)因为,所以由正弦定理,得,因为,所以,所以,所以,所以.(2)解法一:因为为锐角三角形,所以为锐角,因为,所以.因为,,由余弦定理得,所以,所以.解法二:因为为锐角三角形,所以,为锐角,因为,,所以由正弦定理得,所以.因为,所以.所以,由正弦定理得.【点睛】本题考查正余弦定理解三角形,两角和的正弦公式,考查公式的运用,是中档题21.已知a,b,c分别是锐角△ABC的内角A,B,C的对边,.(1)求A;(2)若,且AC边上的高为,求△ABC的周长.参考答案:(1)因,故,………………1分………………3分因为为锐角三角形,故为锐角,,……………4分,得,…………………5分故.……………………6分(或,因,故,).(2)由的面积,得………8分…11分所以的周长为.…12分22.选修4—4:坐标系与参数方程。在平面直角坐标系xOy中,已知曲线,以平面直角坐标系xOy的原点O为极点,x轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论