版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江西省九江市彭泽人杰中学2021年高二数学文月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.过圆锥的高的三等分点作平行于底面的截面,它们把圆锥侧面分成的三部分的面积之比为(
)A.
B.
C.
D.参考答案:B
解析:从此圆锥可以看出三个圆锥,
2.各项都是正数的等比数列{an}的公比q1,成等差数列,则(
)A.
B.
C.
D.参考答案:B略3.若方程x2+ky2=2表示焦点在y轴上的椭圆,则实数k的取值范围为(
)A.(0,+∞)
B.(0,2)
C.(1,+∞)
D.(0,1)参考答案:D4.设M=,且a+b+c=1(其中a、b、c∈R+),则M的取值范围是(
)
A.
B.
C.
D.参考答案:D5.设是定义在上以2为周期的偶函数,已知,,则函数在上()A.是增函数且
B.是增函数且C.是减函数且
D.是减函数且参考答案:D略6.曲线的极坐标方程ρ=4sinθ,化成直角坐标方程为(
)A.x2+(y+2)2=4
B.x2+(y-2)2=4
C.(x-2)2+y2=4
D.(x+2)2+y2=4参考答案:B7.已知都是实数,那么“”是“”的(
)(A)充分不必要条件
(B)必要不充分条件
(C)充要条件
(D)既不充分也不必要条件参考答案:A8.展开式中系数最大的项
(
)A.第项
B.第项
C.第项
D.第项与第项参考答案:C9.要完成下列两项调查:①从某社区125户高收入家庭、200户中等收入家庭、95户低收入家庭中选出100户,调查社会购买能力的某项指标;②
从某中学的5名艺术特长生中选出3名调查学习负担情况.宜采用的方法依次为(
)
A.①简单随机抽样调查,②系统抽样
B.①分层抽样,②简单随机抽样
C.①系统抽样,②
分层抽样
D.①②
都用分层抽样
参考答案:B略10.
已知椭圆的长轴长是短轴长的倍,则椭圆的离心率等于(
).A.
B.
C.
D.参考答案:B二、填空题:本大题共7小题,每小题4分,共28分11.已知圆C的方程为,若直线上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,则的最大值是
.参考答案:12.如图,在棱长均为2的正三棱柱ABC﹣A1B1C1中,点M是侧棱AA1的中点,点P、Q分别是侧面BCC1B1、底面ABC内的动点,且A1P∥平面BCM,PQ⊥平面BCM,则点Q的轨迹的长度为.参考答案:
【考点】平面与平面之间的位置关系;棱柱的结构特征.【分析】根据已知可得点Q的轨迹是过△MBC的重心,且与BC平行的线段,进而根据正三棱柱ABC﹣A1B1C1中棱长均为2,可得答案.【解答】解:∵点P是侧面BCC1B1内的动点,且A1P∥平面BCM,则P点的轨迹是过A1点与平面MBC平行的平面与侧面BCC1B1的交线,则P点的轨迹是连接侧棱BB1,CC1中点的线段l,∵Q是底面ABC内的动点,且PQ⊥平面BCM,则点Q的轨迹是过l与平面MBC垂直的平面与平面MBC的线段m,故线段m过△MBC的重心,且与BC平行,由正三棱柱ABC﹣A1B1C1中棱长均为2,故线段m的长为:×2=,故答案为:【点评】本题考查的知识点是平面与平面之间的位置关系,棱柱的几何特征,动点的轨迹,难度中档.13.ΔABC中,a=1,b=,∠A=30°,则∠B等于
。参考答案:略14.若△的内角所对的边满足,且角C=60°,则的值为
.
参考答案:略15.如果复数,则的模为
参考答案:216.已知函数,.若存在2个零点,则a的取值范围是__________.参考答案:【分析】首先根据g(x)存在2个零点,得到方程有两个解,将其转化为有两个解,即直线与曲线有两个交点,根据题中所给的函数解析式,画出函数的图像(将去掉),再画出直线,并将其上下移动,从图中可以发现,当时,满足与曲线有两个交点,从而求得结果.【详解】画出函数的图像,在y轴右侧的去掉,再画出直线,之后上下移动,可以发现当直线过点A时,直线与函数图像有两个交点,并且向下可以无限移动,都可以保证直线与函数的图像有两个交点,即方程有两个解,也就是函数有两个零点,此时满足,即故答案为.【点睛】该题考查的是有关已知函数零点个数求有关参数的取值范围问题,在求解的过程中,解题的思路是将函数零点个数问题转化为方程解的个数问题,将式子移项变形,转化为两条曲线交点的问题,画出函数的图像以及相应的直线,在直线移动的过程中,利用数形结合思想,求得相应的结果.17.在中,,则_____________.参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知A,B是抛物线y2=4x上的不同两点,弦AB(不平行于y轴)的垂直平分线与x轴交于点P.(Ⅰ)若直线AB经过抛物线y2=4x的焦点,求A,B两点的纵坐标之积;(Ⅱ)若点P的坐标为(4,0),弦AB的长度是否存在最大值?若存在,求出其最大值;若不存在,请说明理由.参考答案:【考点】抛物线的简单性质.【专题】直线与圆;圆锥曲线的定义、性质与方程.【分析】(Ⅰ)求出抛物线的焦点,设直线AB方程为y=k(x﹣1),联立抛物线方程,消去x,可得y的方程,运用韦达定理,即可求得A,B两点的纵坐标之积;(Ⅱ)设AB:y=kx+b(k≠0),A(x1,y1),B(x2,y2),联立直线和抛物线方程,消去y,可得x的方程,运用韦达定理和中点坐标公式,以及弦长公式,化简整理,再由二次函数的最值,即可求得弦长的最大值.【解答】解:(Ⅰ)抛物线y2=4x的焦点为F(1,0),依题意,设直线AB方程为y=k(x﹣1),其中k≠0.将代入直线方程,得,整理得ky2﹣4y﹣4k=0,所以yAyB=﹣4,即A,B两点的纵坐标之积为﹣4.(Ⅱ)设AB:y=kx+b(k≠0),A(x1,y1),B(x2,y2).由得k2x2+(2kb﹣4)x+b2=0.由△=4k2b2+16﹣16kb﹣4k2b2=16﹣16kb>0,得kb<1.所以,.设AB中点坐标为(x0,y0),则,,所以弦AB的垂直平分线方程为,令y=0,得.由已知,即2k2=2﹣kb.====,当,即时,|AB|的最大值为6.当时,;当时,.均符合题意.所以弦AB的长度存在最大值,其最大值为6.【点评】本题考查抛物线的方程和性质,主要考查抛物线的方程的运用,考查直线和抛物线方程联立,消去未知数,运用韦达定理和弦长公式,结合二次函数的最值求法,属于中档题.19.已知直线y=ax+1与双曲线3x2-y2=1交于A、B两点.(1)求a的取值范围;(2)若以AB为直径的圆过坐标原点,求实数a的值.
参考答案:略20.某学校1800名学生在一次百米测试中,成绩全部介于13秒与18秒之间,抽取其中50名学生组成一个样本,将测试结果按如下方式分成五组:第一组[13,14),第二组[14,15)……,第五组[17,18],如图是按上述分组方法得到的频率分布直方图.(1)请估计学校1800名学生中,成绩属于第四组的人数;(2)若成绩小于15秒认为良好,求该样本中在这次百米测试中成绩良好的人数;(3)请根据频率分布直方图,求样本数据的众数、平均数.参考答案:解:(1)学校1800名学生中,成绩属
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 零信任安全核心架构
- 篮球技术动作训练
- 廉颇与蔺相如人物关系解析
- 社工站末期评估汇报大纲
- 糖尿病并发症科普
- 变应性鼻炎常见症状及护理指导
- 理想责任教育体系建设
- 水泥细度检验方法
- 糖尿病常见并发症症状详解及护理措施
- 事故赔偿协议书范本
- 2025广东东莞市寮步镇人民政府招聘专职安全员10人考前自测高频考点模拟试题及答案详解一套
- 2024石家庄市国企招聘考试真题及答案
- 远程机器人手术操作指南(2025版)
- 2025天津宏达投资控股有限公司及所属企业招聘工作人员笔试模拟试题及答案解析
- 2025年度北京市公务员录用考试行政职业能力测验试卷真题及答案
- 五年(2021-2025)高考地理真题分类汇编:专题12 交通(全国)(原卷版)
- 消防证考试题目及答案
- 麦肯锡思维培训
- DB11-T 941-2021 无机纤维喷涂工程技术规程
- 隧道正洞机械开挖(电子雷管引爆)项目专项预算定额
- 2025年医师定期考核试题库及答案(版)
评论
0/150
提交评论