




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省株洲市富里中学2022-2023学年高三数学文上学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.若方程的实根在区间上,则
A.
B.1
C.或1
D。0参考答案:C略2.一个几何体的三视图如图所示,则该几何体的体积是()A.112 B.80 C.72 D.64参考答案:B【考点】L!:由三视图求面积、体积.【分析】根据三视图我们可以判断,该几何体是由一个正方体和一个四棱锥组成的组合体,根据三视图中标识的数据,结合正方体的体积公式和棱锥的体积公式,即可得到答案.【解答】解:根据三视图我们可以判断,该几何体是由一个正方体和一个四棱锥组成的组合体,根据三视图中标识的数据可知:正方体及四棱锥的底面棱长均为4,四棱锥高3则V正方体=4×4×4=64=16故V=64+16=80故选B3.已知x,y满足条件,则的最大值为A.2 B.3C.4 D.5参考答案:C4.已知等比数列的公比,且成等差数列,则的前8项和为(
)
A.127 B.255 C.511
D.1023参考答案:B略5.已知全集U={1,2,3,4,5,6,7),M={1,3,5,6},N={2,3,5},则CU(MN)=A.{1,4,6,7}
B.{2,4,6,7} C.{1,2,4,6,7} D.{1,3,4,6,7}
参考答案:C【知识点】交、并、补集的混合运算由题意知M∩N={3,5},则CU(MN)={1,2,4,6,7},故选C.【思路点拨】求出M∩N,即可求解CU(M∩N)即可.
6.已知x,y的值如表所示:x234y546如果y与x呈线性相关且回归直线方程为,则b=() A. B. C. D. 参考答案:A7.二项式展开式中的系数是(
)A.-14
B.14
C.-28
D.28参考答案:A8.已知函数f(x)是偶函数,当x>0时,f(x)=(2x﹣1)lnx,则曲线y=f(x)在点(﹣1,f(﹣1))处的切线斜率为()A.﹣2 B.﹣1 C.1 D.2参考答案:B【考点】利用导数研究曲线上某点切线方程.【分析】利用切线的斜率是函数在切点处导数,求出当x>0时,切线斜率,再利用函数f(x)是偶函数,即可得出结论.【解答】解:∵当x>0时,f(x)=(2x﹣1)lnx,∴f′(x)=2lnx+2﹣,∴f′(1)=1∵函数f(x)是偶函数,∴f′(﹣1)=﹣1,∴曲线y=f(x)在点(﹣1,f(﹣1))处的切线斜率为﹣1,故选:B.9.已知,则A.
B.
C.
D.参考答案:答案:B10.设α∈(0,),β∈(0,),且tanα=,则()A.3α﹣β= B.3α+β= C.2α﹣β= D.2α+β=参考答案:C【考点】三角函数的化简求值.【分析】化切为弦,整理后得到sin(α﹣β)=cosα,由该等式左右两边角的关系可排除选项A,B,然后验证C满足等式sin(α﹣β)=cosα,则答案可求.【解答】解:由tanα=,得:,即sinαcosβ=cosαsinβ+cosα,sin(α﹣β)=cosα=sin(),∵α∈(0,),β∈(0,),∴当时,sin(α﹣β)=sin()=cosα成立.故选:C.二、填空题:本大题共7小题,每小题4分,共28分11.设直线的参数方程为(t为参数),直线的方程为y=3x+4则与的距离为_______参考答案:解析:由题直线的普通方程为,故它与与的距离为。12.如图,有一块半径为20米,圆心角的扇形展示台,展示台分成两个区域:三角形OCD,弓形CMD,扇形AOC和扇形BOD(其中).某次菊花展分别在这四个区域摆放:泥金香紫龙卧雪、朱砂红霜,预计这三种菊花展示带来的日效益分别是:50元/米2,,30元/米2,,40元/米2,,为使预计日总效益最大,的余弦值应等于
.参考答案:设日总效益设为,则,又由,可得,解得,由,函数递增,,函数递减,既有,即由时,预计日收益最大,所以的余弦值为.
13.某中学在高一年级开设了4门选修课,每名学生必须参加这4门选修课中的一门,对于该年级的甲、乙、丙3名学生,这3名学生选择的选修课互不相同的概率是(结果用最简分数表示).参考答案:考点:等可能事件的概率.专题:概率与统计.分析:所有的选法共有43=64种,3这名学生选择的选修课互不相同的选法有=24种,由此求得这3名学生选择的选修课互不相同的概率.解答:解:所有的选法共有43=64种,3这名学生选择的选修课互不相同的选法有=24种,故这3名学生选择的选修课互不相同的概率为=,故答案为.点评:本题主要考查等可能事件的概率,分步计数原理的应用,属于中档题.14.在圆内,过点的最长弦与最短弦分别为与,则四边形的面积为参考答案:15.已知变量,满足约束条件若目标函数仅在点处取到最大值,则实数的取值范围_______________.参考答案:16.已知正项等比数列{an}的前n项和为Sn,若S3=3,S9﹣S6=12,则S6=
.参考答案:9【考点】等差数列的前n项和;等差数列的性质.【分析】根据正项等比数列{an}的前n项和的性质,Sn,S2n﹣Sn,S3n﹣S2n成等比数列,建立等式关系,解之即可.【解答】解:∵正项等比数列{an}的前n项和为Sn,∴S3,S6﹣S3,S9﹣S6成等比数列即(S6﹣S3)2=S3?(S9﹣S6),∴(S6﹣3)2=3×12解得S6=9或﹣3(正项等比数列可知﹣3舍去),故答案为:9【点评】本题主要考查了等比数列的前n项和,以及等比数列的性质,同时考查运算求解的能力,属于基础题.17.半径为的球面上有三点,,则球心到平面的距离为________参考答案:答案:5三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知,,.(Ⅰ)求向量与的夹角θ;(Ⅱ)求及向量在方向上的投影.参考答案:【考点】平面向量数量积的运算;数量积表示两个向量的夹角.【专题】平面向量及应用.【分析】(Ⅰ)将已知等式展开转化为两个向量的模压机数量积的计算问题,利用数量积公式求θ;(Ⅱ)根据投影的定义,利用数量积公式解答.【解答】解:(Ⅰ)因为,,.所以,即16﹣8cosθ﹣3=9,所以cosθ=,因为θ∈[0,π],所以;(Ⅱ)由(Ⅰ)可知,所以==5,||=,所以向量在方向上的投影为:.【点评】本题考查了平面向量的数量积公式的运用求向量的夹角以及一个向量在另一个向量的投影;关键是熟练掌握数量积公式以及几何意义.19.(本小题满分12分)李先生家住H小区,他工作在C科技园区,从家开车到公司上班路上有两条路线(如图),路线上有三个路口,各路口遇到红灯的概率均为;路线上有两个路口,各路口遇到红灯的概率依次为.(I)若走路线,求最多遇到1次红灯的概率;(II)若走路线,求遇到红灯次数的X的数学期望;(III)按照“平均遇到红灯次数最少”的要求,请你帮助李先生从上述两条路线中选择一条最好的上班路线,并说明理由.参考答案:20.在正三角形ABC中,E、F、P分别是﹣AB、AC、BC边上的点,满足AE:EB=CF:FA=CP:PB=1:2(如图1).将△AEF沿EF折起到△A1EF的位置,使二面角A1﹣EF﹣B成直二面角,连结A1B、A1P(如图2).(1)求证:A1E⊥平面BEP;(2)求二面角B一A1P一F的余弦值的大小.参考答案:【考点】MT:二面角的平面角及求法;LW:直线与平面垂直的判定;MR:用空间向量求平面间的夹角.【分析】(1)利用线面垂直的判定定理即可证明A1E⊥平面BEP;(2)建立空间坐标系,求出平面的法向量,利用向量法即可求二面角B一A1P一F的余弦值的大小.【解答】解:不妨设正三角形ABC的边长为3.(1)在图1中,取BE的中点D,连结DF.∵AE:EB=CF:FA=1:2,∴AF=AD=2.…而∠A=60°,∴△ADF是正三角形.又AE=DE=1,∴EF⊥AD.…在图2中,A1E⊥EF,BE⊥EF,∴∠A1EB为二面角A1﹣EF﹣B的平面角.由题设条件知此二面角为直二面角,∴A1E⊥BE.又BE∩EF=E,∴A1E⊥平面BEF,即A1E⊥平面BEP.…(2)由(1)知,即A1E⊥平面BEP,BE⊥EF.以E为原点,以EB、EF、EA1分别为x、y、z轴建立如图3所示的坐标系如图,….…∴.…,…,.…,.…,.…因为二面角B﹣A1P﹣F为钝角,.…21.某种产品的质量以其质量指标值衡量,质量指标越大表明质量越好,且质量指标值大于或等于102的产品为优质品.现用两种新配方(分别称为A配方和B配方)做试验,各生产了100件这种产品,并测量了每产品的质量指标值,得到时下面试验结果:A配方的频数分布表指标值分组[90,94)[94,98)[98,102)[102,106)[106,110]频数82042228B配方的频数分布表指标值分组[90,94)[94,98)[98,102)[102,106)[106,110]频数412423210(I)分别估计用A配方,B配方生产的产品的优质品率;(II)已知用B配方生产的一种产品利润y(单位:元)与其质量指标值t的关系式为从用B配方生产的产品中任取一件,其利润记为X(单位:元).求X的分布列及数学期望.(以试验结果中质量指标值落入各组的频率作为一件产品的质量指标值落入相应组的概率).参考答案:(Ⅰ)由试验结果知,用A配方生产的产品中优质的平率为,所以用A配方生产的产品的优质品率的估计值为0.3.由试验结果知,用B配方生产的产品中优质品的频率为,所以用B配方生产的产品的优质品率的估计值为0.42(Ⅱ)用B配方生产的100件产品中,其质量指标值落入区间的频率分别为0.04,,054,0.42,因此P(X=-2)=0.04,
P(X=2)=0.54,
P(X=4)=0.42,即X的分布列为-2240.040.540.42X的数学期望值EX=-2×0.04+2×0.54+4×0.42=2.6822.(本小题共14分)已知实数组
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年桥隧工职业综合技能资格知识考试题与答案
- 2025年社会工作者之初级社会综合能力题库综合试卷A卷附答案
- 2024年建筑工程《施工员》职业技能及安全施工知识试题与答案
- 山西晋中市平遥县2024-2025学年七年级下学期期末语文试题(解析版)
- 吉林省长春市南关区2024-2025学年七年级下学期期末语文试题
- 摄影基础知识培训总结
- 设施农业技术试题及答案
- 2025年合同法下劳动者单方面解除合同的具体规定
- 摄像仪基础知识培训课件课程
- 2025年农村土地使用权转让合同书
- 价值导向引领:CRM策略的深度剖析与创新实践
- 跌倒护理PDCA循环实施模板
- 事业单位离岗退养政策
- 2025年纸杯机市场分析现状
- 新疆乌鲁木齐市名校2025届八下数学期末经典试题含解析
- 《初中毕业班家长会课件中学衔接》
- 鼓胀中医护理
- 2024年青海省门源回族自治县事业单位公开招聘村务工作者笔试题带答案
- 设备整厂出售合同协议
- 2025-2030中国高k和ALD和和CVD金属前体行业市场发展趋势与前景展望战略研究报告
- 2025-2030中国缝纫机器人行业市场发展趋势与前景展望战略研究报告
评论
0/150
提交评论