2022年内蒙古自治区赤峰市市浩尔吐中学高一数学理下学期期末试卷含解析_第1页
2022年内蒙古自治区赤峰市市浩尔吐中学高一数学理下学期期末试卷含解析_第2页
2022年内蒙古自治区赤峰市市浩尔吐中学高一数学理下学期期末试卷含解析_第3页
2022年内蒙古自治区赤峰市市浩尔吐中学高一数学理下学期期末试卷含解析_第4页
2022年内蒙古自治区赤峰市市浩尔吐中学高一数学理下学期期末试卷含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022年内蒙古自治区赤峰市市浩尔吐中学高一数学理下学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知是从A到B的映射,若1和8的原象分别是3和10,则5在f下的象是(

)A.3

B.4

C.5

D.6参考答案:A2.若,是第三象限的角,则(

)(A)3

(B)

(C)

(D)

参考答案:B,则3.设向量,若向量与向量垂直,则的值为A.

B.1

C.-1

D.-5参考答案:D由已知得a+λb=(1-λ,2+λ),∵向量a+λb与向量a垂直,所以(a+λb)·a=0.∴(1-λ)×1+(2+λ)×2=0,解得λ=-5.故选D.4.为了得到函数的图象,只需把函数的图象

()A.向上平移一个单位

B.向下平移一个单位C.向左平移一个单位

D.向右平移一个单位参考答案:D5.在△ABC中,AB=5,BC=7,AC=8,则的值为(

)A.79

B.69

C.5

D.-5参考答案:D略6.定义在R上的奇函数f(x)满足:当x>0时,f(x)=2017x+log2017x,则在R上,函数f(x)零点的个数为()A.1个 B.2个 C.3个 D.4个参考答案:C【考点】根的存在性及根的个数判断.【分析】x>0时,求f′(x),并容易判断出f′(x)>0,所以f(x)在(0,+∞)上是单调函数.然后判断有没有x1,x2使得f(x1)f(x2)<0:分别取x=2017﹣2017,1,便可判断f(2017﹣2017)<0,f(1)>0,从而得到f(x)在(0,+∞)上有一个零点,根据奇函数的对称性便得到f(x)在(﹣∞,0)上有一个零点,而因为f(x)是奇函数,所以f(0)=0,这样便得到在R上f(x)零点个数为3.【解答】解:x>0时,f′(x)=2017xln2017+>0;∴f(x)在(0,+∞)上单调递增;取x=2017﹣2017,则f(2017﹣2017)=﹣2017;∴<2017;∴f(2017﹣2017)<0,又f(1)=2017>0;∴f(x)在(0,+∞)上有一个零点,根据奇函数关于原点对称,f(x)在(﹣∞,0)也有一个零点;又f(0)=0;∴函数f(x)在R上有3个零点.故选:C.【点评】考查奇函数的概念,函数导数符号和函数单调性的关系,函数零点的概念,以及判断函数在一区间上有没有零点,以及有几个零点的方法,奇函数图象关于原点的对称性.7.设集合,,则A∩B=(

)A. B. C. D.参考答案:D试题分析:集合,集合,所以,故选D.考点:1、一元二次不等式;2、集合的运算.8.下列命题中正确的是()A.如果平面α⊥平面β,那么平面α内一定不存在直线平行于平面βB.平面α⊥平面β,且α∩β=l,若在平面α内过任一点P做L的垂线m,那么m⊥平面βC.如果平面α⊥平面γ,平面β⊥平面γ,那么平面α∥平面βD.如果直线l∥平面α,那么直线l平行于平面α内的任意一条直线参考答案:B【考点】空间中直线与平面之间的位置关系.【专题】空间位置关系与距离.【分析】利用空间中线线、线面、面面间的位置关系求解.【解答】解:如果平面α⊥平面β,那么平面α内存在直线平行于平面β,故A错误;平面α⊥平面β,且α∩β=l,若在平面α内过任一点P做l的垂线m,那么由平面与平面垂直的性质得m⊥平面β,故B正确;如果平面α⊥平面γ,平面β⊥平面γ,那么平面α与平面β相交或平行,故C错误;如果直线l∥平面α,那么直线l和平面α内的任意一条直线平行或异面,故D错误.故选:B.【点评】本题考查命题真假的判断,是中档题,解题时要认真审题,注意空间思维能力的培养.9.下面有四个命题:(1)集合中最小的数是;(2)若不属于,则属于;(3)若则的最小值为;(4)的解可表示为;其中正确命题的个数为(

)A.个

B.个

C.个

D.个参考答案:A

解析:(1)最小的数应该是,(2)反例:,但(3)当,(4)元素的互异性10.(5分)直线m,n均不在平面α,β内,给出下列命题:①若m∥n,n∥α,则m∥α;②若m∥β,α∥β,则m∥α;③若m⊥n,n⊥α,则m∥α;④若m⊥β,α⊥β,则m∥α;则其中正确命题的个数是() A. 1 B. 2 C. 3 D. 4参考答案:D考点: 空间中直线与直线之间的位置关系.专题: 空间位置关系与距离.分析: 利用空间中线线、线面、面面间的位置关系求解.解答: 注意前提条件直线m,n均不在平面α,β内.对于①,根据线面平行的判定定理知,m∥α,故①正确;对于②,如果直线m与平面α相交,则必与β相交,而这与α∥β矛盾,故m∥α,故②正确;对于③,在平面α内任取一点A,设过A,m的平面γ与平面α相交于直线b,∵n⊥α,∴n⊥b,又m⊥n,∴m⊥b,∴m∥α,故③正确;对于④,设α∩β=l,在α内作m′⊥β,∵m⊥β,∴m∥m′,∴m∥α,故④正确.故选:D.点评: 本题考查命题真假的判断,是基础题,解题时要认真审题,注意空间思维能力的培养.二、填空题:本大题共7小题,每小题4分,共28分11.在中,角A,B,C所对的边分别是,若,且,则的面积等于

.参考答案:略12.若三个球的表面积之比是,则它们的体积之比是

。参考答案:略13.不等式解集为R,则取值集合

参考答案:14.一条光线从A(﹣,0)处射到点B(0,1)后被y轴反射,则反射光线所在直线的方程为.参考答案:2x+y﹣1=0【考点】与直线关于点、直线对称的直线方程.【分析】由反射定律可得点A(﹣,0)关于y轴的对称点A′(,0)在反射光线所在的直线上,再根据点B(0,1)也在反射光线所在的直线上,用两点式求得反射光线所在的直线方程.【解答】解:由反射定律可得点点A(﹣,0)关于y轴的对称点A′(,0)在反射光线所在的直线上,再根据点B(0,1)也在反射光线所在的直线上,用两点式求得反射光线所在的直线方程为,即2x+y﹣1=0,故答案为:2x+y﹣1=0.15.(5分)函数f(x)=sinx+2|sinx|,x∈[0,2π]的图象与直线y=k有且仅有两个不同的交点,则实数k的取值范围是

.参考答案:(1,3)考点: 正弦函数的图象.专题: 三角函数的图像与性质.分析: 根据sinx≥0和sinx<0对应的x的范围,去掉绝对值化简函数解析式,再由解析式画出函数的图象,由图象求出k的取值范围.解答: 由题意知,,在坐标系中画出函数图象:由其图象可知当直线y=k,k∈(1,3)时,与f(x)=sinx+2|sinx|,x∈[0,2π]的图象与直线y=k有且仅有两个不同的交点.故答案为:(1,3).点评: 本题的考点是正弦函数的图象应用,即根据x的范围化简函数解析式,根据正弦函数的图象画出原函数的图象,再由图象求解,考查了数形结合思想和作图能力.16.等差数列{an}前n项和为Sn,若a7+a9=16,S7=7,则a12=.参考答案:15【考点】等差数列的性质.【分析】根据等差中项的性质分别根据a7+a9=16,S7=7求得a8和a4,最后根据2a8=a4+a12求得a12.【解答】解:∵a7+a9=2a8=16,∴a8=8,∵S7==7,∴a4=1∵2a8=a4+a12,∴a12=15故答案为1517.已知数列{an}满足递推关系:,则__________.参考答案:【分析】利用“取倒数”的方法,构造出为等差数列,利用等差数列公式得到答案.【详解】,可得,可得,即有,则.故答案为:.【点睛】本题考查了数列的通项公式,熟练掌握通项公式的几种基本求法是解题的关键.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知函数f(x)的定义域为D,若存在x0∈D,使等式f(x0)=x0成立,则称x=x0为函数f(x)的不动点,若x=±1均为函数f(x)=的不动点.(1)求a,b的值.(2)求证:f(x)是奇函数.参考答案:【考点】函数奇偶性的判断.【专题】函数的性质及应用.【分析】(1)直接利用定义把条件转化为f(﹣1)=﹣1,f(1)=1联立即可求a,b的值及f(x)的表达式;(2)根据奇函数的定义进行证明.【解答】解:(1)有题意可得:解得:;(2)由(1)知,,故f(x)=,定义域是R,设任意x,则,f(﹣x)==﹣=﹣f(x),故函数f(x)是奇函数.【点评】本题考查的知识点是函数解析式的求法,函数的奇偶性,属于基础题.19.已知定义域为R的函数是奇函数.(1)求m,n的值;(2)当时,恒成立,求实数k的取值范围.参考答案:(1)∵在定义域为是奇函数,所以…………1分又由

…………2分检验知,当时,原函数是奇函数.

…………3分

(2).由(1)知

任取设

…………4分则

因为函数在上是增函数,且所以又

…………6分即函数在上是减函数.

…………7分因是奇函数,从而不等式等价于因在上是减函数,由上式推得

…………8分即对一切有:恒成立,

…………9分设令则有即的取值范围为

…………12分20.对于三个实数a、b、k,若成立,则称a、b具有“性质k”.(1)试问:①,0是否具有“性质2”;②(),0是否具有“性质4”;(2)若存在及,使得成立,且,1具有“性质2”,求实数m的取值范围;(3)设,,,为2019个互不相同的实数,点()均不在函数的图象上,是否存在,且,使得、具有“性质2018”,请说明理由.参考答案:(1)①具有“性质2”,②不具有“性质4”;(2);(3)存在.【分析】(1)①根据题意需要判断的真假即可②根据题意判断是否成立即可得出结论;(2)根据具有性质2可求出的范围,由存在性问题成立转化为,根据函数的性质求最值即可求解.【详解】(1)①因,成立,所以,故,0具有“性质2”②因为,设,则设,对称轴为,所以函数在上单调递减,当时,,所以当时,不恒成立,即不成立,故(),0不具有“性质4”.(2)因为,1具有“性质2”所以化简得解得或.因为存在及,使得成立,所以存在及使即可.令,则,当时,,所以在上是增函数,所以时,,当时,,故时,因为在上单调递减,在上单调递增,所以,故只需满足即可,解得.(3)假设具有“性质2018”,则,即证明在任意2019个互不相同的实数中,一定存在两个实数,满足:.证明:由,令,由万能公式知,将等分成2018个小区间,则这2019个数必然有两个数落在同一个区间,令其为:,即,也就是说,在,,,这2019个数中,一定有两个数满足,即一定存在两个实数,满足,从而得证.【点睛】本题主要考查了不等式的证明,根据存在性问题求参数的取值范围,三角函数的单调性,万能公式,考查了创新能力,属于难题.21.(12分)设全集U=R,A={x|1<2x﹣1<5},B={x|≤2x≤4},求A∪B,(?RA)∩B.参考答案:考点: 交、并、补集的混合运算.专题: 计算题.分析: 求出A与B中不等式的解集确定出A与B,找出两集合的并集,求出A的补集,确定出A补集与B的交集即可.解答: 由A中的不等式1<2x﹣1<5变形得:2<2x<6,解得:1<x<3,即A={x|1<x<3};由B中的不等式≤2x≤4变形得:2﹣1≤2x≤22,解得:﹣1≤x≤2,即B={x|﹣1≤x≤2},∴A∪B={x|﹣1≤x<3},?RA={x|x≤1或x≥3},则(?

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论