空间点直线平面之间的位置关系平面公开课一等奖市优质课赛课获奖课件_第1页
空间点直线平面之间的位置关系平面公开课一等奖市优质课赛课获奖课件_第2页
空间点直线平面之间的位置关系平面公开课一等奖市优质课赛课获奖课件_第3页
空间点直线平面之间的位置关系平面公开课一等奖市优质课赛课获奖课件_第4页
空间点直线平面之间的位置关系平面公开课一等奖市优质课赛课获奖课件_第5页
已阅读5页,还剩36页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2.1.1平面观察教室里的桌面、黑板面,它们呈现出怎样的形象?实例引入观察观察活动室里的地面,它呈现出怎样的形象?实例引入观察观察海面,它又呈现出怎样的形象?实例引入观察生活中的一些物体通常呈平面形,课桌面、黑板面、海面都给我们以平面的形象.你还能从生活中举出类似平面形的物体吗?引入新课

几何里所说的“平面”(plane)就是从这样的一些物体中抽象出来的,但是,几何里的平面是无限延展的.1、平面的概念桌面黑板面平静的水面平面的形象几何里的平面是无限延展的.2.平面的画法我们常常把水平的平面画成一个平行四边形,用平行四边形表示平面.

平行四边形的锐角通常画成45°,且横边长等于其邻边长的2倍.DCABADCBEF被遮挡部分用虚线表示为了增强立体感,常常把被遮挡部分用虚线画出来.2.平面的画法1、平面是无限延展的2、画法:ABCD3、记法:①平面α③平面AC②平面ABCD(标记在角上)一、平面的表示方法(但常用平面的一部分表示平面)常用平行四边形或平面BD、平面β、平面γ注意:1、平面的两个特征:

②平的(没有厚度)

①无限延展一个平面把空间分成两部分.2、一条直线把平面分成两部分.1、判断下列各题的说法正确与否,在正确的说法的题号后打,否则打:1、一个平面长4米,宽2米;(

)2、平面有边界;()3、一个平面的面积是25cm2;()4、菱形的面积是4cm2;()5、一个平面可以把空间分成两部分.()练习图形符号语言文字语言(读法)点在直线上点不在直线上点在平面内

点不在平面内

直线a、b交于点A

二、点、线、面的基本位置关系(1)符号表示:(2)集合关系:点A、线a、面α图形符号语言文字语言(读法)直线a在平面内直线a与平面无公共点直线a与平面交于点平面与相交于直线例1.将下列符号语言转化为图形语言:(1)(2)说明:画图的顺序:先画大件(平面),再画小件(点、线),,,,,,,(2)直线a经过平面外一点M

(3)直线在平面内,又在平面内(即平面和平面相交于直线)

(1)点A在平面内,但不在平面内例2.将下列文字语言转化为符号语言:

如果直线l与平面α有一个公共点P,直线l是否在平面α内?思考平面公理

实际生活中,我们有这样的经验:把一根直尺边缘上的任意两点放到桌面上,可以看到,直尺的整个边缘就落在了桌面上.思考平面公理

如果直线l与平面α有两个公共点,直线l是否在平面α内?公理1如果一条直线上的两点在一个平面内,那么这条直线在此平面内.ABl作用:判定直线是否在平面内.平面公理在生产、生活中,人们经过长期观察与实践,总结出关于平面的一些基本性质,我们把它作为公理.这些公理是进一步推理的基础.生活中经常看到用三角架支撑照相机.平面公理平面公理测量员用三角架支撑测量用的平板仪.公理2过不在一条直线上的三点,有且只有一个平面.ACB存在性唯一性作用:确定平面的主要依据.平面公理

不再一条直线上的三个点A、B、C所确定的平面,可以记成“平面ABC”.经过不在同一条直线上的三点,有且只有一个平面。

公理2

ABC三条推论:1.经过一条直线和这条直线外一点,有且只有一个平面2.经过两条相交直线,有且只有一个平面3.经过两条平行直线,有且只有一个平面把三角板的一个角立在课桌面上,三角板所在平面与桌面所在平面是否只相交于一点B?为什么?B思考平面公理B把三角板的一个角立在课桌面上,三角板所在平面与桌面所在平面是否只相交于一点B?为什么?思考平面公理公理3如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.作用:①判断两个平面相交的依据.②判断点在直线上.lP平面公理文字语言图形语言符号语言mB·错误直线m不在平面m内表示为·A·..作用:用来判断直线是否在平面内由点、线、面的关系有直线在平面α内表示为公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内.文字语言图形语言符号语言公理2:过不在一条直线上的三点,有且只有一个平面.α·A·B·C作用:一确定平面二用来证明点,线共面文字语言图形语言符号语言公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.αβ·P判定两个平面是否相交二是判断点在线上.(点是两个面公共点,线是两面公共线则点在线上)例1如图,用符号表示下列图形中点、直线、平面之间的位置关系.alABalPb(1)(2)解:在(1)中,在(2)中,典型例题在正方体中,判断下列命题是否正确,并说明理由:①直线在平面内;错误随堂练习在正方体中,判断下列命题是否正确,并说明理由:②设正方形ABCD与的中心分别为O,,则平面与平面的交线为;正确随堂练习在正方体中,判断下列命题是否正确,并说明理由:③由点A,O,C可以确定一个平面;错误随堂练习在正方体中,判断下列命题是否正确,并说明理由:④由确定的平面是;⑤由确定的平面与由确定的平面是同一个平面.正确正确随堂练习③四条线段顺次首尾连接,所得的图形一定是平面图形吗?为什么?练习①为什么有的自行车后轮旁只安装一只撑脚?②三角形、梯形是否一定是平面图形?为什么?④用符号表示下列语句,并画出图形:⑴点A在平面α内,点B在平面α外;⑵直线在平面α内,直线m不在平面α内;⑶平面α和β相交于直线;⑷直线经过平面α外一点P和平面α内一点Q;⑸直线是平面α和β的交线,直线m在平面α内,和m相交于点P.课堂练习:课本P44

练习1、2、3、4补练:①有三个公共点的两个平面重合②梯形的四个顶点在同一个平面内③三条互相平行的直线必共面④四条线段顺次首尾连接,构成平面图形2、下列命题正确的是()A、两条直线可以确定一个平面B、一条直线和一个点可以确定一个平面C、空间不同的三点可以确定一个平面D、两条相交直线可以确定一个平面1、下列命题中,正确的命题是()A、圆上三点可以确定一个平面B、圆心和圆上两点可确定一个平面C、四条平行直线不能确定五个平面D、空间四点中,若四点不共面,则任意三点不共线4、若给定空间三条直线共面的条件,这四个条件中不正确的是()①三条直线两两相交②三条直线两两平行③三条直线中有两条平行④三条直线共点3、在空间中,下列命题错误的是()5、根据下列条件画出图形:平面α∩平面β=AB直线a∈α,直线b∈β,a∥AB,b∥AB

6、如图、A∈α,直线AB和AC不在α内,画出AB和AC所确定的平面β,并画出直线BC和平面α的交点.BCAα小结

1.平面的概念;3.点、直线、平面间基本关系的文字语言,图形语言和符号语言之间关

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论