小学数学数形结合教学思想(8篇)_第1页
小学数学数形结合教学思想(8篇)_第2页
小学数学数形结合教学思想(8篇)_第3页
小学数学数形结合教学思想(8篇)_第4页
小学数学数形结合教学思想(8篇)_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第第页小学数学数形结合教学思想(8篇)浅谈初中数学中数形思想转化12-19下面是小编为大伙儿带来的8篇《小学数学数形结合教学思想》,在大家参考的同时,也可以分享一下小编给您的好友哦。

“数形结合”在小学低段数学教学中的应用篇一

《“数形结合”在小学低段数学教学中的应用》

龙南县龙翔学校

曾智勇

一、有利于把抽象的数学概念直观化,帮助学生形成概念

学生在进入小学学习之前,他们的知识基本上是建立在现实生活中客观事物上的。其知识特点是直观形象,看得见,摸得着。而进入小学阶段,教师如果运用数形结合来引入新知、建构概念、解决问题,就相当于在原有的知识体系上添砖加瓦,新知识的学习就变得更简单。这样新学的知识就会具有较高的稳定性和牢固性,而我们也达到了所需的教学效果,也就是所谓深入浅出。

例如:二年级数学第一册中《乘法的引入》。

用相同的图像引导学生列出同数相加的算式,这样一方面利用数形结合思想直观、形象、生动的特点展现乘法的初始状态,懂得乘法的由来(知识的产生与发展);另一方面借助学生已有的知识经验——看图列加法算式,加深了图、式的对应思想,无形中也降低了教学难度。

我在实际课堂教学中运用PPT幻灯片技术展现一个盆子里有三个苹果,然后依次出现这样的第二个盆子,第三个盆子,一直到第五个盆子,如何来表示这个场景呢?学生自然会用同数相加的方法来表示。接着,教师一边出示课件一边提出:“如果有20个盆子,30个盆子,甚至100个盆子,你们怎么办呢?”学生一片哗然:“哦~~!算式太长了,本子都写不下呢。”这时,建立乘法概念水到渠成!数形结合使学生不仅理解了乘法的意义,而且懂得了乘法是同数相加的简便运算。

从学生的思维活动过程来看:在这个片段中,学生经历了由具体到抽象的思维过程,也就是由直观的小船,抽象成连加算式,抽象成乘法算式,经历了由一般到特殊的思维过程。

二、使计算中的算式形象化,帮助学生在理解算理

小学数学内容中,有相当部分的内容是计算问题,计算教学要引导学生理解算理。但在教学中很多老师忽视了引导学生理解算理,尤其在课改之后,老师们注重了算法多样化,在计算方法的研究上下了很大功夫,却更加忽视了算理的理解。我们应该意识到,算理就是计算方法的道理,学生不明白道理又怎么能更好的掌握计算方法呢?在教学时,教师应以清晰的理论指导学生理解算理,在理解算理的基础上掌握计算方法,正所谓“知其然、知其所以然。”根据教学内容的不同,引导学生理解算理的策略也是不同的,我认为数形结合是帮助学生理解算理的一种很好的方式。

如,在教学有余数的除法时,我就是利用7根小棒来完成的教学的。首先出示7根小棒,问能搭出几个三角形?要求学生用除法算式表示搭三角形的过程。像这样,把算式形象化,学生看到算式就联想到图形,看到图形能联想到算式,更加有效地理解算理。

三、应用“数形结合”,提高学生的能力

对大脑的科研成果表明,大脑的两半球具有不同的功能,左半脑功能偏重于抽象的逻辑思维,讲究规范严谨,稳定封闭,如数的运算、代数式的运算、逻辑推理、归纳演绎等。右半脑功能则偏听偏重于形象思维,讲究直觉想象,自由发散,如猜想、假设、构思开拓、奇异创造等。左、右半脑的功能各有特征,如果互相补充就会使大脑功能更加健全和发达。“数形结合”就同时运用了左、右半脑的功能,在培养形象思维能力时,也促进了逻辑思维能力的发展。

1.“数形结合”有助于对数学知识的记忆

“记忆是智慧的仓库”。人的知识、经验的积累、技能的形成、技巧的熟练、思维能力的培养、事业的成就等都离不开良好的记忆能力。中等职业教育中的数学知识是基础性知识,需要牢固地记忆并掌握这些基础知识,在此基础上做到灵活应用,在整个教学过程中,这二者是相辅相成的。记忆正是掌握知识的基本手段,记忆的过程也就是知识积累的过程,同时有助于知识的深化,知识水平的提高更是要以记忆为前提。有的学生面对一些数学问题束手无策,找不到解题的思路与方法,这与脑子里记忆的数学知识太少有关。只有对数学的基础知识记忆牢固,才能做到温故而知新,应用时熟能生巧,才能进一步发展数学思维,提高数学能力。教学中运用形象记忆的特点,使抽象的数学尽可能地形象化,对学生输入的数学信息和映象就更加深刻,在学生的脑海中形成数学的模型,可以形象地帮助学生理解和记忆。

2.应用“数形结合”,训练学生数学直觉思维能力

在数学里,存在着大量的直觉思维。这就是人们在求解数学问题时,运用已有的知识,从整体上对数学对象及其结构迅速识别、判断,进而作出大胆的猜想,合理的假设,并作出试探性的结论。它具有顿悟、飞跃的特征。

3.应用“数形结合”,培养学生的发散思维能力

发散思维是从同一来源的材料或同一个问题,探求不同思路和方法的思维过程,其思维方向是从不同角度、不同方面看待同一个问题。在教学中常借助“一题多解”或“一题多变”的形式,突出已知与未知之间的矛盾联系,来引发学生提出新的思想、新的方法、新的问题,达到知识融会贯通,发展思维的广阔性和灵活性,激励学生的好奇心和求知欲,提高解决问题的应变能力。

四、应用“数形结合”,解决大量实际问题

运用数形结合有时能使数量之间的内在联系变得比较直观,成为解决问题的有效方法之一。在分析问题的过程中,注意把数和形结合起来考察,根据问题的具体情形,把图形的问题转化为数量关系的问题,或者把数量关系的问题转化为图形的问题,使复杂问题简单化,抽象问题具体化,化难为易。

如植树问题,就是从图形中总结出解决方法。先模拟植树,得出线上植树的三种情况。

“___”代表一段路,用“/”代表一棵树,画“/”就表示种了一棵树。让学生在这段路上种上四棵树,想想、做做,你能有几种种法?学生操作,自立完成后,在小组里交流说说你是怎么种的?

师反馈,实物投影学生摆的情况。师根据学生的反馈相应地把三种情况都贴于黑板:

①_________两端都种

②____________或____________一端栽种

③_______________两端都不种

师生共同小结得出:两端都种:棵数=段数+1;一端栽种:棵数=段数;两端都不种:棵数=段数—1。本学期遇到了的几个题型,如锯木头、路边植树、上楼梯等问题,通过“形”的教学收到了明显的效果。许多孩子不会列算式,但是,会先画图,利用图形再列算式,像这些题目都是利用线段图帮助学生学习。让学生有可以凭借的工具,借助数形结合将文字信息与学习基础耦合,使得学习得以继续,使得学生思维发展有了凭借,也使得数学学习的思想方法真正得以渗透。

数形结合,其实质是将抽象的数学语言与直观的图形联系起来,使抽象思维和形象思维结合起来,通过对图形的处理,发挥直观对抽象的支柱作用,揭示数和形之间的内在联系,实现抽象概念和具体形象、表象之间的转化,发展学生的思维。数形结合是学生建构知识的一个拐杖,有了这根拐杖,学生们才能走得更稳、更好。实践证明,抽象的数学概念和复杂的数量关系,借助图形使之形象化、直观化、简单化。

因此教师要从数学发展的全局着眼,从具体的教学过程着手,有目的、有计划地进行渗透数形结合思想的教学,使学生逐步形成数形结合思想,并使之成为学习数学、解决数学问题的工具,这是我们数学教学着力追求的目标。

小学数学数形结合教学思想篇二

小学数学数形结合教学思想

一、数形结合教学思想在小学数学教学中的运用

数形结合作为一种教学思想方法,一般包含两方面内容,一个方面是“以形助数”,另一个方面的内容是“以数解形”。下面介绍这两个方面的内容在小学数学教学中的运用。

(一)以形助数

所谓“以形助数”,是指老师在讲解某些数学知识的时候,仅靠数字讲解学生不太能理解,借助几何图形的特点,将所要讲的知识点更直观地展现在学生面前,从而将抽象化的问题转变为具体化的问题。学生在学习行程问题的应用题时,可以运用图形的办法清晰地展现问题。如:一辆汽车从甲地开往乙地,先是经过上坡路,然后是平地,最后是下坡路,汽车上坡速度是每小时20千米,在平地的速度是每小时30千米,而下坡的速度则是每小时40千米,汽车从甲地到乙地一共上坡花了6小时,平地花了2小时,下坡花了4小时。请问汽车从乙地到甲地需要多长时间?在这道题中,既存在变量,又存在不变量。变量就是上坡路和下坡路随着汽车行驶的方向而发生改变,当汽车从乙地到甲地行驶时,原先的上坡路变成了下坡路,原先的斜坡路变成了上坡路。而不变量就是这两个路程汽车行驶的速度都是始终不变的。那么在解决问题的时候,就可以直观地展现出来。先算出汽车从乙地到甲地的上坡时间,即(40×4)÷20=8(小时),然后算出下坡所花费的时间,即(20×6)÷40=3(小时),而平地所花费的时间是不变的,所以汽车从乙地到甲地所花费的时间是8+3+2=13(小时)。在这道题中,运用图像将数学中的数量关系、运算都直观地展现出来,学生比较易于理解,这样的教学可以在很大程度上提高教学效率。

(二)以数解形

虽然图形可以更加直观地展现数学中的数量关系,但是对于一些几何图形,特别是小学数学中的几何图形来讲,非常简单,如果仅仅是通过直接观察反而看不出规律,这时就可以运用“以数解形”的方式教学。比如老师在讲解“平行四边形的特征”一课时,很多学生通过学习,对概念性的东西已经非常了解,但是在具体的情况下又不能真正把握清楚,老师在教学过程中就可以通过对四边形进行赋值,让学生更深刻地理解和把握。比如给出三组数字:(1)6,5,3,7(2)7,5,5,7(3)8,6,4,6在这三组数字中,让学生选择平行四边形。那么学生理解了平行四边形的概念,即两组对边要平行且相等,通过比较分析,知道只有第二组数字符合平行四边形的概念。因此,在这样的教学中应该充分运用“数”与“形”的特点,帮助学生更快地掌握知识要点。

二、在小学数学教学中运用数形结合教学思想需要注意的问题

(一)注意培养学生运用数形结合方法的习惯

老师在小学数学中运用数形结合的方法进行教学,帮助学生更好地理解知识点,同时要注意培养学生运用数形结合方法解决数学题的习惯。小学生在平时的做题过程中,常常会忘了使用“数形结合”方法,有的还不会。因此,老师在平时的教学中,一定要培养学生养成运用数形结合方法的好习惯。针对不同的年龄段学生,采用不同的方法,比如低年级学生,引导学生在生活中找实物,高年级的学生则学会简单的画图等,让学生建立数形结合的思想。

(二)数形结合要注意利用多媒体技术多媒体的发展已经迅速蔓延到教学领域,对于比较难懂的知识点

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论