




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广西壮族自治区南宁市陆斡中学高三数学理月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.《九章算术》第三章“衰分”介绍比例分配问题:“衰分”是按比例递减分配的意思,通常称递减的比例(即百分比)为“衰分比”.今共有粮38石,按甲、乙、丙的顺序进行“衰分”,已知甲分得18石,则“衰分比”为()A. B. C. D.参考答案:A【考点】等比数列的通项公式.【分析】设“衰分比”为q,利用等比数列的性质列出方程,能求出结果.【解答】解:设“衰分比”为q,则18+18q+18q2=38,解得q=或q=﹣(舍),故选:A.【点评】本题考查“衰分比”的求法,是基础题,解题时要认真审题,注意等比数列的性质的合理运用.2.已知a,b是两条不同的直线,α是平面,且b?α,那么“a∥α”是“a∥b”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件参考答案:D【考点】必要条件、充分条件与充要条件的判断.【分析】根据线面平行的判定定理以及充分必要条件的定义判断即可.【解答】解:由a∥α推不出a∥b,由a∥b也推不出a∥α,如a在α内,故a∥α”是“a∥b”既不充分也不必要条件,故选:D.3.以下说法错误的是A.命题“若”,则x=1”的逆否命题为“若x≠1,则”B.“x=1”是“”的充分不必要条件C.若p∧q为假命题,则p,q均为假命题D.若命题p:?∈R,++1<0,则﹁p:?x∈R,≥0参考答案:C略4.设是等差数列,,则这个数列的前5项和等于
A.12
B.13
C.15
D.18参考答案:C5.为虚数单位的二项展开式中第七项为
A.
B.
C.
D.参考答案:C6.在三角形ABC中,的值为
(
)
A.
B.
C.
D.参考答案:答案:D7.已知角α的顶点在坐标原点O,始边与x轴的非负半轴重合,将α的终边按顺时针方向旋转后经过点(3,4),则A.-7 B.C. D.7参考答案:A8.在正项等比数列{an}中,a3=,a5=8a7,则a10=()A.
B.
C.
D.参考答案:D9.设集合,,则(
)A.(-∞,3)
B.[2,3)
C.(-∞,2)
D.(-1,2)参考答案:D10.设,则下列不等式中恒成立的是(
)A.
B.
C.
D.参考答案:A略二、填空题:本大题共7小题,每小题4分,共28分11.已知函数f(x)=,若f(f(0))=4a,则实数a=__
__.参考答案:2略12.给出下列命题:①是幂函数②函数的零点有1个③的解集为④“<1”是“<2”的充分不必要条件⑤函数在点O(0,0)处切线是轴其中真命题的序号是
(写出所有正确命题的编号)参考答案:④⑤
略13.平面向量与的夹角为,,,则=________.参考答案:略14.在四边形ABCD中,,,△ACD为等边三角形,则△ABC的外接圆与△ACD的内切圆的公共弦长=___________.参考答案:1解析法:以为轴,的中点为坐标原点建立坐标系,利用解析法即可得。作图法:可以看出的公共弦即的中位线。15.已知为等腰直角三角形,,为斜边的高.()若为线段的中点,则__________.()若为线段上的动点,则的取值范围为__________.参考答案:();()()以为原点,为轴,为轴建立如图直角坐标系,则根据题可知,,,,,,,∴.()设,则,,,其中,.∴,,当时,的取得最小值.当时,取得最大值.故的取值范围为.16.(不等式选讲选做题)若存在实数使成立,则实数的取值范围是
..参考答案:略17.已知圆:,直线被圆截得的弦长是
.参考答案:解析:圆心,半径,弦心距。弦长三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.设函数f(x)=(1﹣ax)ln(x+1)﹣bx,其中a和b是实数,曲线y=f(x)恒与x轴相切于坐标原点.(1)求常数b的值;(2)当a=1时,讨论函数f(x)的单调性;(3)当0≤x≤1时关于x的不等式f(x)≥0恒成立,求实数a的取值范围.参考答案:【考点】利用导数研究函数的单调性.【分析】(1)对f(x)求导,根据条件知f'(0)=0,所以1﹣b=0;(2)当a=1时,f(x)=(1﹣x)ln(x+1)﹣x,f(x)的定义域为(﹣1,+∞);令f'(x)=0,则导函数零点x+1=1,故x=0;当x∈(﹣1,0),f'(x)>0,f(x)在(﹣1,0)上单调递增;当x∈(0,+∞)上,f'(x)<0,f(x)在(0,+∞)上单调递减;(3)因为f(x)=(1﹣ax)ln(x+1)﹣x,0≤x≤1,对a进行分类讨论根据函数的单调性求得参数a使得不等式f(x)≥0;【解答】解:(1)对f(x)求导得:f'(x)=﹣aln(x+1)+根据条件知f'(0)=0,所以1﹣b=0,故b=1.(2)当a=1时,f(x)=(1﹣x)ln(x+1)﹣x,f(x)的定义域为(﹣1,+∞)f'(x)=﹣ln(x+1)+﹣1=﹣ln(x+1)+﹣2令f'(x)=0,则导函数零点x+1=1,故x=0;当x∈(﹣1,0),f'(x)>0,f(x)在(﹣1,0)上单调递增;当x∈(0,+∞)上,f'(x)<0,f(x)在(0,+∞)上单调递减;(3)由(1)知,f(x)=(1﹣ax)ln(x+1)﹣x,0≤x≤1f'(x)=﹣aln(x+1)+﹣1f''(x)=﹣①当a时,因为0≤x≤1,有f''(x)≥0,于是f'(x)在[0,1]上单调递增,从而f'(x)≥f'(0)=0,因此f(x)在[0,1]上单调递增,即f(x)≥f(0)而且仅有f(0)=0;②当a≥0时,因为0≤x≤1,有f''(x)<0,于是f'(x)在[0,1]上单调递减,从而f'(x)≤f'(0)=0,因此f(x)在[0,1]上单调递减,即f(x)≤f(0)=0而且仅有f(0)=0;③当﹣<a<0时,令m=min{1,﹣},当0≤x≤m时,f''(x)<0,于是f'(x)在[0,m]上单调递减,从而f'(x)≤f'(0)=0因此f(x)在[0,m]上单调递减,即f(x)≤f(0)而且仅有f(0)=0;综上:所求实数a的取值范围是(﹣∞,﹣].19.设函数f(x)=lnx﹣ax(a∈R).(1)若直线y=3x﹣1是函数f(x)图象的一条切线,求实数a的值;(2)若函数f(x)在[1,e2]上的最大值为1﹣ae(e为自然对数的底数),求实数a的值;(3)若关于x的方程ln(2x2﹣x﹣3t)+x2﹣x﹣t=ln(x﹣t)有且仅有唯一的实数根,求实数t的取值范围.参考答案:【考点】利用导数求闭区间上函数的最值;利用导数研究曲线上某点切线方程.【分析】(1)求出原函数的导函数,得到x=,求出f()=ln﹣,代入直线y=3x﹣1求得a值;(2)求出原函数的导函数,然后对a分类得到函数在[1,e2]上的单调性,并进一步求出函数在[1,e2]上的最大值,由最大值等于1﹣ae求得a值;(3)把ln(2x2﹣x﹣3t)+x2﹣x﹣t=ln(x﹣t)转化为ln(2x2﹣x﹣3t)(2x2﹣x﹣3t)=ln(x﹣t)(x﹣t),构造函数g(x)=lnx+,则g(x)在(0,+∞)上是增函数,得到,画出图形,数形结合得答案.【解答】解:(1)由f(x)=lnx﹣ax,得f′(x)==3,∴x=,则f()=ln﹣,∴ln﹣=,得ln=0,即a=﹣2;(2)f′(x)=,当a≤时,f′(x)≥0在[1,e2]上恒成立,故f(x)在[1,e2]上为增函数,故f(x)的最大值为f(e2)=2﹣ae2=1﹣ae,得(舍);当<a<1时,若x∈[1,],f′(x)>0,x∈[],f′(x)<0,故f(x)在[1,e2]上先增后减,故由﹣lna﹣1=1﹣ae,a无解;当时,f(x)max=﹣a=1﹣ae,得a=;当a≥1时,故当x∈[1,e2]时,f′(x)≤0,f(x)是[1,e2]上的减函数,故f(x)max=f(1)=﹣a=1﹣ae,得a=(舍);综上,a=;(3)ln(2x2﹣x﹣3t)+x2﹣x﹣t=ln(x﹣t)?ln(2x2﹣x﹣3t)(2x2﹣x﹣3t)=ln(x﹣t)(x﹣t),令g(x)=lnx+,则g(x)在(0,+∞)上是增函数,又g(2x2﹣x﹣3t)=g(x﹣t),∴2x2﹣x﹣3t=x﹣t?2(x2﹣x﹣t)=0,即?,作出图象如图:由图可知,实数t的取值范围是t=﹣或0<t<2.20.(12分)某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品。检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品做检验.设每件产品为不合格品的概率都为p(0<p<1),且各件产品是否为不合格品相互独立.(1)记20件产品中恰有2件不合格品的概率为f(p),求f(p)的最大值点p0.(2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的p0作为p的值.已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元赔偿费用.(ⅰ)若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为X,求EX;(ⅱ)以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?参考答案:解:(1)20件产品中恰有2件不合格品的概率为.因此.令,得.当时,;当时,.所以的最大值点为.(2)由(1)知,.(i)令表示余下的180件产品中的不合格品件数,依题意知,,即.所以.(ii)如果对余下的产品作检验,则这一箱产品所需要的检验费为400元.由于,故应该对余下的产品作检验.
21.(本小题满分10分)选修4—1:几何证明选讲如图,是⊙的直径,是弦,∠BAC的平分线交⊙于,交延长线于点,交于点.(Ⅰ)求证:是⊙的切线;
(Ⅱ)若,求的值.
参考答案:.选修4—1:几何证明选讲证明:(Ⅰ)连接OD,可得OD∥AE...................3分
又
DE是⊙的切线.--......................5分
(Ⅱ)过D作于H,则有
.
设,则..............8分由∽可得
又∽,.......................................................10分22.(本小题满分12分)已知函数在(0,1)上是增函数,(Ⅰ)实数m的取值集合为A,当m取集合A中的最小值时,定义数列满足且,求数列{an}的通项公式;(Ⅱ)若,数列的前n项和为,求证:.参考答案:(1)由题意得f′(x)=﹣3x2+m,∵f(x)=﹣x3+mx在(0,1)上是增函数,∴f′(x)=﹣3x2+m≥0在(0,1)上恒成立,即m≥3x2,得m≥3,-----------------------------2分故所求的集合A
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年无人机巡检技术创新在通信基站缺陷检测中的应用分析
- 泉眼加固的施工方案
- 平菇菌种供应创新创业项目商业计划书
- 思维导图工具创新创业项目商业计划书
- 抹灰专项施工方案
- 摄影装饰画创新创业项目商业计划书
- 淡水养殖仿生技术应用创新创业项目商业计划书
- 小学体育教学比赛课件
- 道路树木采伐施工方案
- 2025年创意产业与产品开发考试试题及答案
- (部编版)统编版小学语文教材目录(一至六年级上册下册齐全)
- 送教上门记录24篇
- 2025届广东省佛山市南海区数学七上期末统考试题含解析
- JGJT384-2016 钻芯法检测混凝土强度技术规程
- 《大学生美育》 课件 第七章 艺术美
- 《智慧农业关键技术与装备》课件-第09章 农业信息传输技术概述
- 2024年江门市蓬江区侨盛发展集团有限公司招聘笔试参考题库附带答案详解
- 血透进修汇报
- 艺术设计学专业导论
- 七年级英语阅读理解专项练习题及答案
- 2024年国家电投集团黄河上游水电开发有限责任公司招聘笔试参考题库含答案解析
评论
0/150
提交评论