湖北省武汉市黄陂区第四中学高一数学文测试题含解析_第1页
湖北省武汉市黄陂区第四中学高一数学文测试题含解析_第2页
湖北省武汉市黄陂区第四中学高一数学文测试题含解析_第3页
湖北省武汉市黄陂区第四中学高一数学文测试题含解析_第4页
湖北省武汉市黄陂区第四中学高一数学文测试题含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖北省武汉市黄陂区第四中学高一数学文测试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.如图,一圆锥形物体的母线长为4,其侧面积为4π,则这个圆锥的体积为(

)A. B. C. D.参考答案:C【分析】先利用侧面积求解底面圆的周长,进而解出底面面积,再求体高,最后解得体积【详解】圆锥的展开图为扇形,半径,侧面积为为扇形的面积,所以扇形的面积,解得,所以弧长,所以底面周长为,由此可知底面半径,所以底面面积为,体高为,故圆锥的体积,故选C。【点睛】本题已知展开图的面积,母线长求体积,是圆锥问题的常见考查方式,解题的关键是抓住底面圆的周长为展开图的弧长。2.下列以x为自变量的函数中,是指数函数的是()A. B.y=(﹣3)x C.y=2x+1 D.y=x3参考答案:A【考点】指数函数的图象与性质.【分析】根据指数函数的定义形式可得答案.【解答】解:指数函数的定义形式为:y=ax(a>0,且a≠1).观察各选项可得:A是指数函数.故选A.3.已知△ABC中,三内角A,B,C依次成等差数列,三边a,b,c成等比数列,则△ABC是()A.等边三角形

B.等腰直角三角形

C.钝角三角形

D.直角三角形参考答案:A略4.(3分)函数f(x)=() A. 是奇函数 B. 是偶函数 C. 是非奇非偶函数 D. 既是奇函数,又是偶函数参考答案:A考点: 函数奇偶性的判断.专题: 函数的性质及应用.分析: 求解定义域为{x|x≠±1},关于原点对称,运用解析式得出f(﹣x)=﹣f(x)判断即可.解答: ∵函数f(x)=,∴定义域为{x|x≠±1},关于原点对称,∵f(﹣x)==﹣f(x),∴f(x)为奇函数,故选:A.点评: 本题考查了奇函数的定义,运用定义判断,属于容易题,难度不大,容易忽视定义域的判断.5.设函数,则f(x)的最小值和最大值分别为(

)A.-1,3

B.0,3

C.-1,4

D.-2,0参考答案:A6.设⊿的面积为,已知,则的值为(

).

1参考答案:B略7.掷一枚均匀的硬币两次,事件M:“一次正面朝上,一次反面朝上”;事件N:“至少一次正面朝上”,则下列结果正确的是()参考答案:D8.阅读右边的程序框图,输出结果的值为(

)A.

B.

C.

D.参考答案:C9.

A.

B.

C.

D.参考答案:D10.设是等比数列的前n项和,且满足,则的值为(

)A.

B.5

C.8

D.15参考答案:B二、填空题:本大题共7小题,每小题4分,共28分11.若直线与曲线有四个交点,则实数的取值范围是

.参考答案:略12.从小到大的排列顺序是

。参考答案:

解析:,而13.若向量,若∥,则k=

。参考答案:14.给出以下五个命题:①集合与都表示空集;②是从A=[0,4]到B=[0,3]的一个映射;③函数是偶函数;④是定义在R上的奇函数,则;⑤是减函数.

以上命题正确的序号为:

参考答案:②④略15.下列4个命题:①为了了解800名学生对学校某项教改试验的意见,打算从中抽取一个容量为40的样本,考虑用系统抽样,则分段的间隔为40;②四边形为长方形,,,为中点,在长方形内随机取一点,取得的点到的距离大于1的概率为;③把函数的图象向右平移个单位,可得到的图象;④已知回归直线的斜率的估计值为1.23,样本点的中心为(4,5),则回归直线方程为.其中正确的命题有

.(填上所有正确命题的编号)参考答案:③④16.若函数的反函数的图像过点,则a=

.参考答案:17.以下给出的是计算的值的一个程序框图(如图所示),其中判断框内应填入的条件是

参考答案:i>20三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知等差数列与等比数列满足,,且.(1)求数列,的通项公式;(2)设,是否存在正整数,使恒成立?若存在,求出的值;若不存在,请说明理由.参考答案:(1),.(2)存在正整数,,证明见解析【分析】(1)根据题意,列出关于d与q的两个等式,解方程组,即可求出。(2)利用错位相减求出,再讨论求出的最小值,对应的n值即为所求的k值。【详解】(1)解:设等差数列与等比数列的公差与公比分别为,,则,解得,于是,,.(2)解:由,即,①,②①②得:,从而得.令,得,显然、所以数列是递减数列,于是,对于数列,当为奇数时,即,,,…为递减数列,最大项为,最小项大于;当为偶数时,即,,,…为递增数列,最小项为,最大项大于零且小于,那么数列的最小项为.故存在正整数,使恒成立.【点睛】本题考查等差等比数列,利用错位相减法求差比数列的前n项和,并讨论其最值,属于难题。19.如图所示,在直角梯形ABCD中,AB∥CD,∠BCD=90°,BC=CD=2,AF=BF,EC∥FD,FD⊥底面ABCD,M是AB的中点.(1)求证:平面CFM⊥平面BDF;(2)点N在CE上,EC=2,FD=3,当CN为何值时,MN∥平面BEF.参考答案:【考点】直线与平面平行的判定;平面与平面垂直的判定.【分析】(1)推导出四边形BCDM是正方形,从而BD⊥CM,又DF⊥CM,由此能证明CM⊥平面BDF.(2)过N作NO∥EF,交EF于O,连结MO,则四边形EFON是平行四边形,连结OE,则四边形BMON是平行四边形,由此能推导出N是CE的中点时,MN∥平面BEF.【解答】证明:(1)∵FD⊥底面ABCD,∴FD⊥AD,FD⊥BD∵AF=BF,∴△ADF≌△BDF,∴AD=BD,连接DM,则DM⊥AB,∵AB∥CD,∠BCD=90°,∴四边形BCDM是正方形,∴BD⊥CM,∵DF⊥CM,∴CM⊥平面BDF.解:(2)当CN=1,即N是CE的中点时,MN∥平面BEF.证明如下:过N作NO∥EF,交ED于O,连结MO,∵EC∥FD,∴四边形EFON是平行四边形,∵EC=2,FD=3,∴OF=1,∴OD=2,连结OE,则OE∥DC∥MB,且OE=DC=MB,∴四边形BMOE是平行四边形,则OM∥BE,又OM∩ON=O,∴平面OMN∥平面BEF,∵MN?平面OMN,∴MN∥平面BEF.【点评】本题考查线面垂直的证明,考查满足线面平行的点的位置的确定,是中档题,解题时要认真审题,注意空间思维能力的培养.20.(14分)已知指数函数y=g(x)满足:g(3)=8,定义域为R的函数f(x)=是奇函数.(Ⅰ)确定y=g(x),y=f(x)的解析式;(Ⅱ)若h(x)=f(x)+a在(﹣1,1)上有零点,求a的取值范围;(Ⅲ)若对任意的t∈(1,4),不等式f(2t﹣3)+f(t﹣k)>0恒成立,求实数k的取值范围.参考答案:【考点】函数的零点;函数解析式的求解及常用方法;函数恒成立问题.【专题】综合题;函数思想;综合法;函数的性质及应用.【分析】(Ⅰ)设g(x)=ax(a>0且a≠1),由a3=8解得a=2.故g(x)=2x.再根据函数是奇函数,求出m、n的值,得到f(x)的解析式;(Ⅱ)根据零点存在定理得到h(﹣1)h(1)<0,解得即可;(Ⅲ)根据函数为奇函数和减函数,转化为即对一切t∈(1,4),有3t﹣3<k恒成立,再利用函数的单调性求出函数的最值即可.【解答】解:(Ⅰ)设g(x)=ax(a>0且a≠1),∵g(3)=8,∴a3=8,解得a=2.∴g(x)=2x.∴f(x)=,∵函数f(x)是定义域为R的奇函数,∴f(0)=0,∴=0,∴n=1,∴f(x)=又f(﹣1)=f(1),∴=﹣,解得m=2∴f(x)=,(Ⅱ)由(Ⅰ)知f(x)==﹣+,又h(x)=f(x)+a在(﹣1,1)上有零点,从而h(﹣1)h(1)<0,即(﹣++a)(++a)<0,∴(a+)(a﹣)<0,∴﹣<a<,∴a的取值范围为(﹣,);(Ⅲ)由(Ⅰ)知f(x)==﹣+,易知f(x)在R上为减函数,又f(x)是奇函数,∴f(2t﹣3)+f(t﹣k)>0,∴f(2t﹣3)>﹣f(t﹣k)=f(k﹣t),∵f(x)在R上为减函数,由上式得2t﹣3<k﹣t,即对一切t∈(1,4),有3t﹣3<k恒成立,令m(t)=3t﹣3,t∈(1,4),易知m(t)在(1,4)上递增,m(t)<3×4﹣3

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论