LLM辅助知识图谱工程 ChatGPT实验 -LLM-assisted Knowledge Graph Engineering -Experiments with ChatGPT_第1页
LLM辅助知识图谱工程 ChatGPT实验 -LLM-assisted Knowledge Graph Engineering -Experiments with ChatGPT_第2页
LLM辅助知识图谱工程 ChatGPT实验 -LLM-assisted Knowledge Graph Engineering -Experiments with ChatGPT_第3页
LLM辅助知识图谱工程 ChatGPT实验 -LLM-assisted Knowledge Graph Engineering -Experiments with ChatGPT_第4页
LLM辅助知识图谱工程 ChatGPT实验 -LLM-assisted Knowledge Graph Engineering -Experiments with ChatGPT_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

arXiv:2307.06917v1[cs.AI]13Jul2023

LLM-assistedKnowledgeGraphEngineering:

ExperimentswithChatGPT

Lars-PeterMeyer1,2,3[0000—0001—5260—5181],

ClausStadler1,2,3[0000—0001—9948—6458],JohannesFrey1,2,3[0000—0003—3127—0815],

NormanRadtke1,2[0000—0001—9155—8920],KurtJunghanns1,2[0000—0003—1337—2770],

RoyMeissner2,3[0000—0003—4193—8209],GordianDziwis1[0000—0002—9592—418X],

KirillBulert1,2[0000—0002—1459—3754],andMichaelMartin1,2[0000—0003—0762—8688]

1InfAIe.V.Leipzig,Germany,lpmeyer@,

2AKSWresearchgroup,

3LeipzigUniversity,Germany,

https://www.uni-leipzig.de

Abstract.KnowledgeGraphs(KG)provideuswithastructured,ex-ible,transparent,cross-system,andcollaborativewayoforganizingourknowledgeanddataacrossvariousdomainsinsocietyandindustrialaswellasscientiicdisciplines.KGssurpassanyotherformofrepresenta-tionintermsofefectiveness.However,KnowledgeGraphEngineering(KGE)requiresin-depthexperiencesofgraphstructures,webtechnolo-gies,existingmodelsandvocabularies,rulesets,logic,aswellasbestpractices.Italsodemandsasigniicantamountofwork.

Consideringtheadvancementsinlargelanguagemodels(LLMs)andtheirinterfacesandapplicationsinrecentyears,wehaveconductedcom-prehensiveexperimentswithChatGPTtoexploreitspotentialinsup-portingKGE.Inthispaper,wepresentaselectionoftheseexperimentsandtheirresultstodemonstratehowChatGPTcanassistusinthede-velopmentandmanagementofKGs.

Keywords:ChatGPT·knowledgegraphengineering·RDF·largelan-guagemodelusecases·AIapplication.

1Introduction

Inthelastyears,ArtiicialIntelligence(AI)hasshowngreatpromiseinimprov-ingorrevolutionizingvariousieldsofresearchandpractice,includingknowledgeengineering.TherecentbigleapinAI-basedassistantchatbots,likeChatGPT(GenerativePre-trainedTransformer)model,hascreatednewopportunitiestoautomateknowledgeengineeringtasksandreducetheworkloadonhumanex-perts.Withthegrowingvolumeofinformationindiferentields,theneedforscalableandecientmethodstomanageandextractknowledgefromdatathatalsoadapttonewsourcesiscritical.Despitetheadvancesinresearchw.r.t.(semi)automation,knowledgeengineeringtasksstillrelyvastlyonhumanex-perts.Ononehand,thisprocesscanbetime-consuming,resource-intensive,andsusceptibletoerrors.Ontheotherhand,therelianceonhumanexpertisein

2L.-P.Meyeretal.

knowledgeengineeringexposesittoworkforceshortages(asknowledgeengineersarescarceandthedemandisgrowing)andtheriskofexpertiseloss.Thesefac-torscanimpacttheresilienceandsustainabilityofsystemsandoperationsthatrelyonknowledgeengineering.AI-basedassistantbotapproaches,suchasChat-GPT,couldbridgethisgapbyprovidingauniiedtoolfortasksinknowledgeengineering,toreducetheworkloadofknowledgeengineersthemselves,butalsomakeknowledgeengineeringmoreaccessibletoabroaderaudience.ChatGPT,inparticular,hasshownpromiseingeneratingresponsesinavarietyofsyntac-ticalrepresentations(includingcodeandmarkuplanguages)touserqueriesortaskdescriptionswritteninnaturallanguage.

Inthispaper,wediscussandinvestigatethepotentialofChatGPTtosup-portorautomatevariousknowledgeengineeringtasks(e.g.ontologygeneration,SPARQLquerygeneration).Wewillexplorethebeneits,pitfallsandchallengesofusingitandidentifypotentialavenuesforfutureresearch.

2RelatedWork

ChatGPT,aLargeLanguageModel(LLM)publishedbyOpenAI

4

,raisedtheinterestinthebroadieldofMachineLearning(ML)

5

andespeciallyLLMs

[4]

onabroadscale.WhiletherearecurrentdiscussionsandanalysisonthecapabilitiesofLLMslikeChatGPTingeneral(e.g.

[1]),

thereislittleintheareaofknowledge

graphengineering.Ekaputraetal.

[3]

givesageneraloverviewofcurrentresearchonthecombinationofthebroadieldofMLandsemanticweb.

SearchingGoogleScholarandSemanticScholarwith”knowledgegraphChat-GPT”,”ontologyChatGPT”and”rdfChatGPT”inthebeginningofApril2023resultsinonlytworelevantpapers.Theirstone,

[7],

reviewsthediferencesbetweenconversationalAImodels,prominentChatGPT,andstate-of-the-artquestion-answeringsystemsforknowledgegraphs.Intheirsurveyandexperi-ments,theydetectcapabilitiesoftheirusedframeworksbuthighlightChatG-PTsexplainabilityandrobustness.Thesecondone,

[6],

discussestheusageofChatGPTfordatabasemanagementtaskswhentabularschemaisexpressedinanaturallanguage.TheyconcludeamongothersthatChatGPTisabletoassistincomplexsemanticintegrationandtablejoinstosimplifydatabasemanage-mentandenhanceproductivity.TheappliedapproachesandresultsofthesetwopapersindicatethattheideaofusingLLMslikeChatGPTintheieldofKGengineeringisencouragingandthattheLLMsmightassistKGengineersintheirworklows.Still,theresearchontheusageofLLMsforknowledgegraphengineersisscarceandseemstobeanewresearcharea.

Thereexistsomenon-andsemi-scientiicresourceswhichrenderthetopicfromapracticalandexperienceperspective.WewanttohighlighthereahelpfulblogpostbyKurtCagle

[2]

onChatGPTfor”knowledgegraphworkers”andablogpostbyKonradKalicinski

[5]

onknowledgegraphgenerationinNeo4JassistedbyChatGPT.

4

/blog/chatgpt

5

/wp-content/uploads/2023/04/HAI

AI-Index-Report2023.pdf

LLM-assistedKnowledgeGraphEngineering:ExperimentswithChatGPT3

3LLM-AssistedKnowledgeGraphEngineering-PotentialApplicationAreas

IndiscussionroundswithknowledgegraphengineeringexpertsweidentiiedthefollowingpreliminarylistofpotentialusecasesinthedomainofknowledgegraphengineeringapplicabletoLLMsassistance:

–Assistanceinknowledgegraphusage:

GenerateSPARQLqueriesfromnaturallanguagequestions(relatedex-

perimentinSection

4.1

andSection

4.3

)

Explorationandsummarizationofexistingknowledgegraphs(related

experimentinSection

4.5

)

ConversionofcompetencyquestionstoSPARQLqueries

Codegenerationorconigurationoftool(chain)sfordatapipelines–Assistanceinknowledgegraphconstruction

Populatingknowledgegraphs(relatedexperimentinSection

4.4

)and

viceversa

Creationorenrichmentofknowledgegraphschemas/ontologiesGethintsforproblematicgraphdesignbyanalysingChatGPTusages

problemswithaknowledgegraph

Semanticsearchforconceptsorpropertiesdeinedinotheralreadyex-

istingknowledgegraphs

Creationandadjustmentofknowledgegraphsbasedoncompetency

questions

Giventhelimitedspaceofthispaper,weevaluateasubsetoftheapplicationareaswithexperimentsinthefollowingsection.

4Experiments

ToevaluatethecapabilitiesofLLMsattheexampleofChatGPTforassistingwithknowledgegraphengineering,wepresentseveralexperimentsandtheirre-sults.Furtherdetailsaboutthemisgiveninthe

SupplementalOnlineResources

.MostexperimentswereconductedwithChatGPTwiththeLLMGPT-3.5-turbo

6

(namedChatGPT-3fromhereon),someadditionallywithChatGPTwiththeLLMGPT-4

7

(namedChatGPT-4fromhereon).

4.1SPARQLQueryGenerationforaCustomSmallKnowledgeGraph

Forairstevaluation,wedesignedasmallknowledgegraphasshowninListing

1

.Speciically,wewantedtoknowwhether(1)GPTcanexplainconnectionsbetweenindirectlyrelatedentities,(2)createSPARQLqueriesoverthegivenmodeland(3)reconstructthemodelifallpropertiesandclasseswererelabelled.

6

/docs/models/gpt-3-5

7

/docs/models/gpt-4

4L.-P.Meyeretal.

1:anneafoaf:Person;foaf:firstName"Anne";foaf:surname"Miller";

2vcard:hasAddress[avcard:Home;vcard:country-name"UK"].

3:bobafoaf:Person;foaf:firstName"Bob";foaf:surname"Tanner";

4vcard:hasAddress[avcard:Home;vcard:country-name"US"].5:wonderOrgaorg:Organization.

6:researchDepaorg:OrganizationalUnit;org:unitOf:wonderOrg;

7rdfs:label"ResearchDepartment".

8:marketingDepaorg:OrganizationalUnit;org:unitOf:wonderOrg;

9rdfs:label"MarketingDepartment".

10:chiefResearchOfficeraorg:Role.:marketingManageraorg:Role.

11[aorg:Membership;org:member:anne;org:organization:researchDep;

12org:role:chiefResearchOfficer].

13[aorg:Membership;org:member:bob;org:organization:marketingDep;

14org:role:marketingManager].

Listing1:AnorganizationalKGwithtwopeopleworkingindiferentdepart-mentsofthesameorganization.

Weissuedthefollowingprompt,whichincludestheknowledgegraphfromListing

1

,onChatGPT-3andChatGPT-4:

Prompt1:GiventheRDF/Turtlemodelbelow,arethereanyconnectionsbetweenUSandUK?<rdf-model>

IntheknowledgegraphofListing

1

,thereisaconnectionbetweenthetwocountriesviathetwopeoplelivinginthese,whichgotajobindiferentdepart-mentsofthesamecompany.WhileChatGPT-3failstoidentifythisrelation,ChatGPT-4successfullyidentiiesitinallcases.

WefurtheraskedbothChatGPTmodelswithprompt

2

andreceivediveSPARQLquerieseach,whichweanalysedfortheirsyntacticcorrectness,plau-siblequerystructure,andresultquality.Theresultsforprompt

2

arelistedintable

1

andshowthatbothmodelsproducesyntacticallycorrectqueries,whichinmostcasesareplausibleandproducecorrectsresultsin3/5(ChatGPT3)and2/5(ChatGPT4)cases.

Prompt2:GiventheRDF/Turtlemodelbelow,createaSPARQLquerythatlistsforeverypersonthecountry,companyanddepartmentandrole.Pleaseadherestrictlytothegivenmodel.<rdf-model>

Inessence,AI-basedquerygenerationispossibleanditcanproducevalidqueries.However,theprocessneedsresultvalidationintwodimensions:1)val-idatingthequeryitselfbymatchingtostaticinformation,likeavailableclassesandpropertiesinthegraph,aswellas2)validatingtheexecutedqueryresultstoletChatGPTgeneratenewqueriesincaseofemptyresultsetsinordertoindworkingqueriesinatry&errorapproach.

LLM-assistedKnowledgeGraphEngineering:ExperimentswithChatGPT5

Table1.FindingsingeneratedSPARQLqueriesforprompt

2

.

ChatGPT-3ChatGPT-4

syntacticallycorrect

5/5

5/5

plausiblequerystructure

4/5

3/5

producingcorrectresult

3/5

2/5

usingonlydeinedclassesandproperties

correctusageofclassesandproperties

correctpreixforthegraph

3/5

5/5

5/5

4/5

5/5

4/5

AsalastpromptontheknowledgegraphfromListing

1

,wecreatedaderivedRDFgraphbyrelabellingallclassesandpropertieswithsequentiallynumberedIRIsintheexamplenamespace,likeeg:prop1andeg:class2.Giventherelabelledmodel,wetaskedChatGPT:

Prompt3:GiventheRDF/Turtlemodelbelow,pleasereplaceallprop-ertiesandclasseswiththemostlikelystandardones.<rdf-model>

WithChatGPT-3only2/5iterationssucceededincarryingoutallsubstitu-tions.Inthosesucceedingcases,thequalitywasstillnotasexpectedbecauseoflimitedontologyreuse:OnlyIRIsintheexamplenamespacewereintroduced,ratherthanreusingthefoaf,vcard,andorgvocabularies.Yet,thead-hocproper-tiesandclasseswerereasonablynamed,suchaseg:hrstName,eg:countryNameoreg:departmentName.Incontrast,ChatGPT-4deliveredbetterresults:Allclassesandpropertiesweresubstitutedwiththosefromstandardvocabularies-foaf,vcard,andorgwerecorrectlyidentiied.Forsomeiterations,ChatGPT-4usedthevocabularyinsteadoftheorgvocabularyasanalternativeap-proach.

4.2TokenCountsforKnowledgeGraphsSchemas

AftertheresultswiththesmallcustomknowledgegraphwewantedtocheckthesizeofsomewellknownknowledgegraphswithrespecttoLLMs.

TheLLMsbehindChatGPTcanhandleatthemomentonly4096tokens(GPT-3.5

6

)or8192respective32,768tokensforGPT-4

7

.

Wecountedtokensforvariouspublicknowledgegraphsindiferentserializa-tionformatswiththelibrarytiktoken

8

asrecommendedforChatGPT.Table

2

liststhetokencountsforacoupleofcombinationsorderedbytokencount.Moredataandinformationisavailableinthe

SupplementalOnlineResources

.Theturtleserializationseemtoresultinminimaltokencount,butisstillbiggerthanthesimilarSQLschemaaddedforcomparison.Allknowledgegraphsexceedthe

tokenlimitforGPT-3.5and3of4knowledgegraphslistedhereexceedthelimitforGPT-4.

8

/openai/tiktoken

6L.-P.Meyeretal.

Table2.Tokencountsforselectedknowledgegraphsandserialisations

GraphSerialisationTypeTokenCount

MondialOracleDBschemaMondialRDFschema

SQLschema

turtle

2,608token

5,339token

MondialRDFschemaMondialRDFschemaMondialRDFschemaMondialRDFschemaWineOntologyWineOntologyPizzaOntologyPizzaOntology

DBpediaRDFschemaDBpediaRDFschema

functionalsyntax9,696token

manchestersyntax11,336token

xml/rdf17,179token

json-ld47,229token

turtle13,591token

xml/rdf24,217token

turtle5.431token

xml/rdf35,331token

turtle471,251token

xml/rdf2,338,484token

Table3.Findingsingeneratedsparqlqueriesforprompt

4

.

ChatGPT-3ChatGPT-4

syntacticallycorrectplausiblequerystructureproducingcorrectresult

5/52/50/5

5/5

4/5

0/5

usingonlydeinedclassesandproperties

correctusageofclassesandproperties

correctpreixformondialgraph

1/5

0/5

0/5

3/5

3/5

1/5

4.3SPARQLQueryGenerationfortheMondialKnowledgeGraph

Inadditiontotheexperimentswiththesmallcustomknowledgegraph(seeSection

4.1

)wetestedChatGPTwiththebiggermondialknowledgegraph

9

whichispublishedsincedecadeswiththelatest”mainrevision”2015.

WeaskedChatGPTtogenerateaSPARQLqueryforanaturallanguagequestionfromasparqluniversitylecture

10

.Weusedthefollowingpromptive

timeswithChatGPT-3andChatGPT-4each:

Prompt4:Pleasecreateasparqlquerybasedonthemondialknowledge

graphforthefollowingquestion:whichriverhasthemostriparianstates?

Theresultsaredocumentedinthe

SupplementalOnlineResources

togetherwithdetailedcommentsonthegivenqueries.Table

3

givessomestatistics.Insummary,allSPARQLqueriesgivenbyChatGPTweresyntacticallycorrect,butnoneofthemworkedwhenexecuted.Actuallyallquerieshadatleastoneerrorpreventingthecorrectexecutionlikereferencingawrongnamespace,wrongusageofpropertiesorreferencingundeinedclasses.

9

rmatik.uni-goettingen.de/Mondial

10

rmatik.uni-goettingen.de/Teaching/SWPr-SS20/swpr-1.pdf

LLM-assistedKnowledgeGraphEngineering:ExperimentswithChatGPT74.4KnowledgeExtractionfromFactSheets

Asanexperimenttoevaluateknowledgeextractioncapabilities,weusedPDFfactsheetsof3Dprinterspeciicationsfromdiferentadditivemanufacturing(AM)vendorwebsites.ThegoalistobuildaKGaboutexisting3Dprintersandtheirtypeaswellascapabilities.Wefedplaintextexcerpts(extractedviapdfplumber)fromthesePDFsintoChatGPT-3andprompteditto:

Prompt5:Convertthefollowing$$vendor$$3dprinterspeciicationintoaJSONLDformattedKnowledgeGraph.ThenodeforthisKGshouldbePrinterasamainnode,Typeof3dprintersuchasFDM,SLA,andSLS,Manufacturer,Material,Applications,andTechnique.

Sincethefactsheetsareusuallyformattedusingatablescheme,thenatureoftheseplaintextsisthatmostlytheprinterentityismentionedinthebeginningofthetextwhichthenisfurthercharacterizedinakey-valuestyle.Asaresult,thetexttypicallydoesnotusefullsentencesandcontainsonlyoneentitythatisdescribedindetail,butseveraldependantentities(likeprintingmaterials).However,theformatofthekey-valuepairscanbenoisy.Keynamescanbeseparatedwithcolons,newlinefeeds,orincontrastmultiplekey-valuepairscanbeinthesameline,whichcouldimposeachallenge.Nevertheless,ChatGPTwasabletoidentifythekey-valuepairsoftheevaluationdocumentinareliablyway.Unfortunately,itdeliveredoutof5testrunsforthisdocument4partialand1completeJSONdocument.Inspiteofthat,wesummarizeirstinsightsgainedfromaknowledgeengineeringperspective(butforthesakeofbrevity,werefertotheoutputdocumentsintheexperimentsupplements)

–TheJSON-LDoutputformatprioritizesusageofvocabularyinthe5evaluationruns.Thisworksgoodforwell-knownentitiesandproperties(e.g.Organization@typeforthemanufacturer,orthenameproperty),how-ever,fortheAM-speciicfeaturekeynamesortermslikeprinterChatGPT-

3inventsreasonablebutnon-existentpropertynames(inthenamespace)insteadofaccuratelycreatinganewnamespaceorusingaded-icatedAMontologyforthatpurpose.

–Requestingturtleasoutputformatinstead,leadstodiferentresults.E.g.thepropertynamespacepreixisbasedontheprinterIDandthereforeprinterdescriptionsarenotinteroperableandcannotbequeriedinuni-iedwayinajointKG.

–Successfullysplittingx,yandzvaluesofthemaximumprintdimension(in-steadofextractingalldimensionsintoonestringliteral)worksin3runs.AlthoughChatGPT-3accuratelyappendstheunitofmeasurementtoallx,y,zvalues(whichisonlymentionedafterthezvalueintheinput)inthosecases,thisisamodellinglaw,asqueryingtheKGwillbemorecomplex.Inonerunitaddressedthisissuebyseparatingunitsintoaseparateunitcodeield.

8L.-P.Meyeretal.

–Asimilarefectwasobservedwhenitcomestomodellingthedependenten-tities.E.g.,in4runs,themanufacturerwasmodelledcorrectlyasaseparatetypedentity,in1asstringliteralinstead.

Asageneralconclusionoftheexperiment,ChatGPT-3hasoverallsolidskillstoextractthekeyvaluepairsfromthesheets,butthecorrectmodellingorrep-resentationintermsofaKGsigniicantlyvariesfromruntorun.Subsequently,noneofthegeneratedJSONdocumentscontainedsucientinformationontheirown,butonlyasubsetthatwasmodelledaccurately.Aquestionforfuturere-searchiswhethercherrypickingofindividualJSONelementsfromoutputsofseveralrunsandcombiningthemintooneinaldocumentoriterativelyreiningtheoutputbygivingChatGPTgenericmodellingfeedback(likeuseanontology,orseparateunitinformation,etc.)canbeautomatedinagoodandscalableway.

4.5KnowledgeGraphExploration

ExpertsintheieldofknowledgegraphsarefamiliarwithconceptsfromRDFSchema(RDFS)(domain/range,subPropertyOf,subClassOf)andWebOntol-ogyLanguage(OWL)(ObjectProperty,DatatypeProperty,FunctionalProperty,...).Often,eachoftheseexpertshastheirpreferredtoolsandmethodsforgaininganoverviewofanontologytheyarenotyetfamiliarwith.WeaskedChatGPT-3twodiferentquestionsrequestingthemermaid

11

visualizationofthemostimportantconceptsandtheirconnections:

Prompt6:Canyoucreatemeavisualizationshowingthemostimportantclassesandconceptsandhowtheyarelinkedfordbpediaontology,serializedformermaid?

Prompt7:CanyoucreatemeavisualizationofthemostcommonconceptsoftheDBpediaontologyandtheirconnectionsfocusingondomainandrangedeinedinproperties.

Weexpectedagraphwithatleasteightnodesandtheircorrespondingedges.TheidentiiersforthenodesandedgesareexpectedtofollowtheTurtleorSPARQLprefix:conceptnotation.Iftheirstquestiondidnotachievethegoal,weaskedadditionalquestionsordemandstoChatGPT-3.Theresultsarepresentedintable

4

andweevaluatedthedisplayedgraphsbasedonthefollowingcriteria:

Prompt

6

ledtoananswerwithahierarchicalgraphrepresentationoftheimportantclassesdeinedintheDBpediaontology.Thediagramalreadymetourrequirementsregardingtheminimumnumberandlabellingaftertheirstanswerandcanbeseeninthe

SupplementalOnlineResources

.

Theclasshierarchywasrepresentedbytherdfs:subPropertyOfrelation,andthenodeswerelabelledinpreixnotation,asweretheedges.Byarranging

11“...aJavaScript-baseddiagrammingandchartingtool...”

/

9

LLM-assistedKnowledgeGraphEngineering:ExperimentswithChatGPT

Table4.Diagramcontentoverview.

Prompt

6

Prompt

7

MermaidType

LabelsofNodes

LabelsofEdges

NumberofNodes(total/existing/dbo)NumberofEdges(total/unique)

graphgraph*preixandconceptpreixandconcept**preixandconceptpreixandconcept**

10/10/8

12/2

13/12/12

17/17

*Onemorepromptwasneededtoserializeagraph

**Onemorepromptwasneededtoaddpreixedlabels

itasatreeusingthesubClassOf-pattern,onlytwodiferentpropertieswereusedfortherelations(edges).Therootnodewasoftypeowl:Thingothernodesareconnectedas(sub)classesfromtheDBpediaontology.Thesewere:Place,Organi-zation,Event,Work,Species,andPerson.TheclassWorkhadonemoresubClas-sOfrelationtotheclassMusicalWork.TheclassPersonhadthemostcomplexrepresentation,withtwomoresubClassOfrelationsleadingtofoaf:Personandfoaf:Agent,thelatterofwhichisasubclassoftherootnode(owl:Thing).

Inthesecondprompt(Prompt

7

ChatGPT-3referredtoagraphicilewithintheanswertextthatnolongerexisted.Uponfurtherinquiry,amermaiddia-gramwasgenerated.Itwasoftype”Graph”andcontainedthirteencommonconceptsandseventeenedges,whichwereallunique.Thelabelsofboth,nodesandedgescontainnopreixes,butwereaddablewithfurtherinquiry.Onlythegeneratedconceptdbo:Occupationisnon-existent.Allremainingnodesandedgescomplywiththerulesoftheontology,eveniftheconceptsusedarede-rivedthroughfurthersubclassrelationships.Theresultingdiagramisshowninthe

SupplementalOnlineResources

.

Whileprompt

6

leadstoaresultthatcanbemorecomprehensivelyachievedwithconventionaltoolsforvisualizingRDF,theresultfromprompt

7

providesanoverviewofconcepts(classes)andpropertiesthatcanbeusedtorelateinstancesoftheseclassestoeachother.

5ConclusionandFutureWork

Fromtheperspectiveofaknowledgegraphengineer,ChatGPThasdemon-stratedimpressivecapabilities.Itsuccessfullygeneratedknowledgegraphsfromsemi-structuredtextualdata,translatednaturallanguagequestionsintosyn-tacticallycorrectandwell-structuredSPARQLqueriesforthegivenknowl-edgegraphs,andevengeneratedoverviewdiagramsforlargeknowledgegraphschemas,asoutlinedinsection

4

.Andetailedanalysisrevealedthatthegener-atedresultscontainmistakes,ofwhichsomearesubtle.Forsomeusecases,thismightbeharmlessandcanbetackledwithadditionalvalidationstepsingeneral,

likewiththemetricsweusedforSPARQLqueries.Ingeneral,ourconclusionis,

thatoneneedstokeepinmindChatGPT’stendencytohallucinate

12

,especially

12Generationofcontentwithoutanyfoundation

10L.-P.Meyeretal.

whenappliedtotheieldofknowledgegraphengineeringwheremanyengineersareusedtomathematicalprecisionandlogic.

Theclosed-sourcenatureofChatGPTchallengesscientiicresearchonitintwoways:1.Detailedcapabilityratingsofclosed-sourceprobabilisticmodelsrequiremuchefort2.Resultreproducibilityisboundtoserviceavailabilityandresultsmightbeirreproducibleatalaterdate(duetoservicechanges)Thus,opentrainingcorporaandLLMSaremandatoryforproperscientiicresearch.

Inthefuture,metricsaretobefoundtorategeneratedChatGPTanswersautomatically,likewebroachedwithSPARQLqueries.Thisagainenablestoex-tendthenumberoftestcasesforaspeciicexperimentandtogenerateprofoundstatisticalresults.AnotherresearchfocusshouldbegiventomethodsthatlettheLLMaccessabroader/necessarycontexttoincreasethechanceforcorrectanswers.

AcknowledgementsThisworkwaspartiallysupportedbygrantsfromtheGermanFederalMinistryforEconomicAfairsandClimateAction(BMWK)totheCoyPuproject(01MK21007A)andKISSproject(01MK22001A)aswellasfromtheGermanFederalMinistryofEducationandResearch(BMBF)totheprojectSt

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论