




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
arXiv:2307.06917v1[cs.AI]13Jul2023
LLM-assistedKnowledgeGraphEngineering:
ExperimentswithChatGPT
Lars-PeterMeyer1,2,3[0000—0001—5260—5181],
ClausStadler1,2,3[0000—0001—9948—6458],JohannesFrey1,2,3[0000—0003—3127—0815],
NormanRadtke1,2[0000—0001—9155—8920],KurtJunghanns1,2[0000—0003—1337—2770],
RoyMeissner2,3[0000—0003—4193—8209],GordianDziwis1[0000—0002—9592—418X],
KirillBulert1,2[0000—0002—1459—3754],andMichaelMartin1,2[0000—0003—0762—8688]
1InfAIe.V.Leipzig,Germany,lpmeyer@,
2AKSWresearchgroup,
3LeipzigUniversity,Germany,
https://www.uni-leipzig.de
Abstract.KnowledgeGraphs(KG)provideuswithastructured,ex-ible,transparent,cross-system,andcollaborativewayoforganizingourknowledgeanddataacrossvariousdomainsinsocietyandindustrialaswellasscientiicdisciplines.KGssurpassanyotherformofrepresenta-tionintermsofefectiveness.However,KnowledgeGraphEngineering(KGE)requiresin-depthexperiencesofgraphstructures,webtechnolo-gies,existingmodelsandvocabularies,rulesets,logic,aswellasbestpractices.Italsodemandsasigniicantamountofwork.
Consideringtheadvancementsinlargelanguagemodels(LLMs)andtheirinterfacesandapplicationsinrecentyears,wehaveconductedcom-prehensiveexperimentswithChatGPTtoexploreitspotentialinsup-portingKGE.Inthispaper,wepresentaselectionoftheseexperimentsandtheirresultstodemonstratehowChatGPTcanassistusinthede-velopmentandmanagementofKGs.
Keywords:ChatGPT·knowledgegraphengineering·RDF·largelan-guagemodelusecases·AIapplication.
1Introduction
Inthelastyears,ArtiicialIntelligence(AI)hasshowngreatpromiseinimprov-ingorrevolutionizingvariousieldsofresearchandpractice,includingknowledgeengineering.TherecentbigleapinAI-basedassistantchatbots,likeChatGPT(GenerativePre-trainedTransformer)model,hascreatednewopportunitiestoautomateknowledgeengineeringtasksandreducetheworkloadonhumanex-perts.Withthegrowingvolumeofinformationindiferentields,theneedforscalableandecientmethodstomanageandextractknowledgefromdatathatalsoadapttonewsourcesiscritical.Despitetheadvancesinresearchw.r.t.(semi)automation,knowledgeengineeringtasksstillrelyvastlyonhumanex-perts.Ononehand,thisprocesscanbetime-consuming,resource-intensive,andsusceptibletoerrors.Ontheotherhand,therelianceonhumanexpertisein
2L.-P.Meyeretal.
knowledgeengineeringexposesittoworkforceshortages(asknowledgeengineersarescarceandthedemandisgrowing)andtheriskofexpertiseloss.Thesefac-torscanimpacttheresilienceandsustainabilityofsystemsandoperationsthatrelyonknowledgeengineering.AI-basedassistantbotapproaches,suchasChat-GPT,couldbridgethisgapbyprovidingauniiedtoolfortasksinknowledgeengineering,toreducetheworkloadofknowledgeengineersthemselves,butalsomakeknowledgeengineeringmoreaccessibletoabroaderaudience.ChatGPT,inparticular,hasshownpromiseingeneratingresponsesinavarietyofsyntac-ticalrepresentations(includingcodeandmarkuplanguages)touserqueriesortaskdescriptionswritteninnaturallanguage.
Inthispaper,wediscussandinvestigatethepotentialofChatGPTtosup-portorautomatevariousknowledgeengineeringtasks(e.g.ontologygeneration,SPARQLquerygeneration).Wewillexplorethebeneits,pitfallsandchallengesofusingitandidentifypotentialavenuesforfutureresearch.
2RelatedWork
ChatGPT,aLargeLanguageModel(LLM)publishedbyOpenAI
4
,raisedtheinterestinthebroadieldofMachineLearning(ML)
5
andespeciallyLLMs
[4]
onabroadscale.WhiletherearecurrentdiscussionsandanalysisonthecapabilitiesofLLMslikeChatGPTingeneral(e.g.
[1]),
thereislittleintheareaofknowledge
graphengineering.Ekaputraetal.
[3]
givesageneraloverviewofcurrentresearchonthecombinationofthebroadieldofMLandsemanticweb.
SearchingGoogleScholarandSemanticScholarwith”knowledgegraphChat-GPT”,”ontologyChatGPT”and”rdfChatGPT”inthebeginningofApril2023resultsinonlytworelevantpapers.Theirstone,
[7],
reviewsthediferencesbetweenconversationalAImodels,prominentChatGPT,andstate-of-the-artquestion-answeringsystemsforknowledgegraphs.Intheirsurveyandexperi-ments,theydetectcapabilitiesoftheirusedframeworksbuthighlightChatG-PTsexplainabilityandrobustness.Thesecondone,
[6],
discussestheusageofChatGPTfordatabasemanagementtaskswhentabularschemaisexpressedinanaturallanguage.TheyconcludeamongothersthatChatGPTisabletoassistincomplexsemanticintegrationandtablejoinstosimplifydatabasemanage-mentandenhanceproductivity.TheappliedapproachesandresultsofthesetwopapersindicatethattheideaofusingLLMslikeChatGPTintheieldofKGengineeringisencouragingandthattheLLMsmightassistKGengineersintheirworklows.Still,theresearchontheusageofLLMsforknowledgegraphengineersisscarceandseemstobeanewresearcharea.
Thereexistsomenon-andsemi-scientiicresourceswhichrenderthetopicfromapracticalandexperienceperspective.WewanttohighlighthereahelpfulblogpostbyKurtCagle
[2]
onChatGPTfor”knowledgegraphworkers”andablogpostbyKonradKalicinski
[5]
onknowledgegraphgenerationinNeo4JassistedbyChatGPT.
4
/blog/chatgpt
5
/wp-content/uploads/2023/04/HAI
AI-Index-Report2023.pdf
LLM-assistedKnowledgeGraphEngineering:ExperimentswithChatGPT3
3LLM-AssistedKnowledgeGraphEngineering-PotentialApplicationAreas
IndiscussionroundswithknowledgegraphengineeringexpertsweidentiiedthefollowingpreliminarylistofpotentialusecasesinthedomainofknowledgegraphengineeringapplicabletoLLMsassistance:
–Assistanceinknowledgegraphusage:
GenerateSPARQLqueriesfromnaturallanguagequestions(relatedex-
perimentinSection
4.1
andSection
4.3
)
Explorationandsummarizationofexistingknowledgegraphs(related
experimentinSection
4.5
)
ConversionofcompetencyquestionstoSPARQLqueries
Codegenerationorconigurationoftool(chain)sfordatapipelines–Assistanceinknowledgegraphconstruction
Populatingknowledgegraphs(relatedexperimentinSection
4.4
)and
viceversa
Creationorenrichmentofknowledgegraphschemas/ontologiesGethintsforproblematicgraphdesignbyanalysingChatGPTusages
problemswithaknowledgegraph
Semanticsearchforconceptsorpropertiesdeinedinotheralreadyex-
istingknowledgegraphs
Creationandadjustmentofknowledgegraphsbasedoncompetency
questions
Giventhelimitedspaceofthispaper,weevaluateasubsetoftheapplicationareaswithexperimentsinthefollowingsection.
4Experiments
ToevaluatethecapabilitiesofLLMsattheexampleofChatGPTforassistingwithknowledgegraphengineering,wepresentseveralexperimentsandtheirre-sults.Furtherdetailsaboutthemisgiveninthe
SupplementalOnlineResources
.MostexperimentswereconductedwithChatGPTwiththeLLMGPT-3.5-turbo
6
(namedChatGPT-3fromhereon),someadditionallywithChatGPTwiththeLLMGPT-4
7
(namedChatGPT-4fromhereon).
4.1SPARQLQueryGenerationforaCustomSmallKnowledgeGraph
Forairstevaluation,wedesignedasmallknowledgegraphasshowninListing
1
.Speciically,wewantedtoknowwhether(1)GPTcanexplainconnectionsbetweenindirectlyrelatedentities,(2)createSPARQLqueriesoverthegivenmodeland(3)reconstructthemodelifallpropertiesandclasseswererelabelled.
6
/docs/models/gpt-3-5
7
/docs/models/gpt-4
4L.-P.Meyeretal.
1:anneafoaf:Person;foaf:firstName"Anne";foaf:surname"Miller";
2vcard:hasAddress[avcard:Home;vcard:country-name"UK"].
3:bobafoaf:Person;foaf:firstName"Bob";foaf:surname"Tanner";
4vcard:hasAddress[avcard:Home;vcard:country-name"US"].5:wonderOrgaorg:Organization.
6:researchDepaorg:OrganizationalUnit;org:unitOf:wonderOrg;
7rdfs:label"ResearchDepartment".
8:marketingDepaorg:OrganizationalUnit;org:unitOf:wonderOrg;
9rdfs:label"MarketingDepartment".
10:chiefResearchOfficeraorg:Role.:marketingManageraorg:Role.
11[aorg:Membership;org:member:anne;org:organization:researchDep;
12org:role:chiefResearchOfficer].
13[aorg:Membership;org:member:bob;org:organization:marketingDep;
14org:role:marketingManager].
Listing1:AnorganizationalKGwithtwopeopleworkingindiferentdepart-mentsofthesameorganization.
Weissuedthefollowingprompt,whichincludestheknowledgegraphfromListing
1
,onChatGPT-3andChatGPT-4:
Prompt1:GiventheRDF/Turtlemodelbelow,arethereanyconnectionsbetweenUSandUK?<rdf-model>
IntheknowledgegraphofListing
1
,thereisaconnectionbetweenthetwocountriesviathetwopeoplelivinginthese,whichgotajobindiferentdepart-mentsofthesamecompany.WhileChatGPT-3failstoidentifythisrelation,ChatGPT-4successfullyidentiiesitinallcases.
WefurtheraskedbothChatGPTmodelswithprompt
2
andreceivediveSPARQLquerieseach,whichweanalysedfortheirsyntacticcorrectness,plau-siblequerystructure,andresultquality.Theresultsforprompt
2
arelistedintable
1
andshowthatbothmodelsproducesyntacticallycorrectqueries,whichinmostcasesareplausibleandproducecorrectsresultsin3/5(ChatGPT3)and2/5(ChatGPT4)cases.
Prompt2:GiventheRDF/Turtlemodelbelow,createaSPARQLquerythatlistsforeverypersonthecountry,companyanddepartmentandrole.Pleaseadherestrictlytothegivenmodel.<rdf-model>
Inessence,AI-basedquerygenerationispossibleanditcanproducevalidqueries.However,theprocessneedsresultvalidationintwodimensions:1)val-idatingthequeryitselfbymatchingtostaticinformation,likeavailableclassesandpropertiesinthegraph,aswellas2)validatingtheexecutedqueryresultstoletChatGPTgeneratenewqueriesincaseofemptyresultsetsinordertoindworkingqueriesinatry&errorapproach.
LLM-assistedKnowledgeGraphEngineering:ExperimentswithChatGPT5
Table1.FindingsingeneratedSPARQLqueriesforprompt
2
.
ChatGPT-3ChatGPT-4
syntacticallycorrect
5/5
5/5
plausiblequerystructure
4/5
3/5
producingcorrectresult
3/5
2/5
usingonlydeinedclassesandproperties
correctusageofclassesandproperties
correctpreixforthegraph
3/5
5/5
5/5
4/5
5/5
4/5
AsalastpromptontheknowledgegraphfromListing
1
,wecreatedaderivedRDFgraphbyrelabellingallclassesandpropertieswithsequentiallynumberedIRIsintheexamplenamespace,likeeg:prop1andeg:class2.Giventherelabelledmodel,wetaskedChatGPT:
Prompt3:GiventheRDF/Turtlemodelbelow,pleasereplaceallprop-ertiesandclasseswiththemostlikelystandardones.<rdf-model>
WithChatGPT-3only2/5iterationssucceededincarryingoutallsubstitu-tions.Inthosesucceedingcases,thequalitywasstillnotasexpectedbecauseoflimitedontologyreuse:OnlyIRIsintheexamplenamespacewereintroduced,ratherthanreusingthefoaf,vcard,andorgvocabularies.Yet,thead-hocproper-tiesandclasseswerereasonablynamed,suchaseg:hrstName,eg:countryNameoreg:departmentName.Incontrast,ChatGPT-4deliveredbetterresults:Allclassesandpropertiesweresubstitutedwiththosefromstandardvocabularies-foaf,vcard,andorgwerecorrectlyidentiied.Forsomeiterations,ChatGPT-4usedthevocabularyinsteadoftheorgvocabularyasanalternativeap-proach.
4.2TokenCountsforKnowledgeGraphsSchemas
AftertheresultswiththesmallcustomknowledgegraphwewantedtocheckthesizeofsomewellknownknowledgegraphswithrespecttoLLMs.
TheLLMsbehindChatGPTcanhandleatthemomentonly4096tokens(GPT-3.5
6
)or8192respective32,768tokensforGPT-4
7
.
Wecountedtokensforvariouspublicknowledgegraphsindiferentserializa-tionformatswiththelibrarytiktoken
8
asrecommendedforChatGPT.Table
2
liststhetokencountsforacoupleofcombinationsorderedbytokencount.Moredataandinformationisavailableinthe
SupplementalOnlineResources
.Theturtleserializationseemtoresultinminimaltokencount,butisstillbiggerthanthesimilarSQLschemaaddedforcomparison.Allknowledgegraphsexceedthe
tokenlimitforGPT-3.5and3of4knowledgegraphslistedhereexceedthelimitforGPT-4.
8
/openai/tiktoken
6L.-P.Meyeretal.
Table2.Tokencountsforselectedknowledgegraphsandserialisations
GraphSerialisationTypeTokenCount
MondialOracleDBschemaMondialRDFschema
SQLschema
turtle
2,608token
5,339token
MondialRDFschemaMondialRDFschemaMondialRDFschemaMondialRDFschemaWineOntologyWineOntologyPizzaOntologyPizzaOntology
DBpediaRDFschemaDBpediaRDFschema
functionalsyntax9,696token
manchestersyntax11,336token
xml/rdf17,179token
json-ld47,229token
turtle13,591token
xml/rdf24,217token
turtle5.431token
xml/rdf35,331token
turtle471,251token
xml/rdf2,338,484token
Table3.Findingsingeneratedsparqlqueriesforprompt
4
.
ChatGPT-3ChatGPT-4
syntacticallycorrectplausiblequerystructureproducingcorrectresult
5/52/50/5
5/5
4/5
0/5
usingonlydeinedclassesandproperties
correctusageofclassesandproperties
correctpreixformondialgraph
1/5
0/5
0/5
3/5
3/5
1/5
4.3SPARQLQueryGenerationfortheMondialKnowledgeGraph
Inadditiontotheexperimentswiththesmallcustomknowledgegraph(seeSection
4.1
)wetestedChatGPTwiththebiggermondialknowledgegraph
9
whichispublishedsincedecadeswiththelatest”mainrevision”2015.
WeaskedChatGPTtogenerateaSPARQLqueryforanaturallanguagequestionfromasparqluniversitylecture
10
.Weusedthefollowingpromptive
timeswithChatGPT-3andChatGPT-4each:
Prompt4:Pleasecreateasparqlquerybasedonthemondialknowledge
graphforthefollowingquestion:whichriverhasthemostriparianstates?
Theresultsaredocumentedinthe
SupplementalOnlineResources
togetherwithdetailedcommentsonthegivenqueries.Table
3
givessomestatistics.Insummary,allSPARQLqueriesgivenbyChatGPTweresyntacticallycorrect,butnoneofthemworkedwhenexecuted.Actuallyallquerieshadatleastoneerrorpreventingthecorrectexecutionlikereferencingawrongnamespace,wrongusageofpropertiesorreferencingundeinedclasses.
9
rmatik.uni-goettingen.de/Mondial
10
rmatik.uni-goettingen.de/Teaching/SWPr-SS20/swpr-1.pdf
LLM-assistedKnowledgeGraphEngineering:ExperimentswithChatGPT74.4KnowledgeExtractionfromFactSheets
Asanexperimenttoevaluateknowledgeextractioncapabilities,weusedPDFfactsheetsof3Dprinterspeciicationsfromdiferentadditivemanufacturing(AM)vendorwebsites.ThegoalistobuildaKGaboutexisting3Dprintersandtheirtypeaswellascapabilities.Wefedplaintextexcerpts(extractedviapdfplumber)fromthesePDFsintoChatGPT-3andprompteditto:
Prompt5:Convertthefollowing$$vendor$$3dprinterspeciicationintoaJSONLDformattedKnowledgeGraph.ThenodeforthisKGshouldbePrinterasamainnode,Typeof3dprintersuchasFDM,SLA,andSLS,Manufacturer,Material,Applications,andTechnique.
Sincethefactsheetsareusuallyformattedusingatablescheme,thenatureoftheseplaintextsisthatmostlytheprinterentityismentionedinthebeginningofthetextwhichthenisfurthercharacterizedinakey-valuestyle.Asaresult,thetexttypicallydoesnotusefullsentencesandcontainsonlyoneentitythatisdescribedindetail,butseveraldependantentities(likeprintingmaterials).However,theformatofthekey-valuepairscanbenoisy.Keynamescanbeseparatedwithcolons,newlinefeeds,orincontrastmultiplekey-valuepairscanbeinthesameline,whichcouldimposeachallenge.Nevertheless,ChatGPTwasabletoidentifythekey-valuepairsoftheevaluationdocumentinareliablyway.Unfortunately,itdeliveredoutof5testrunsforthisdocument4partialand1completeJSONdocument.Inspiteofthat,wesummarizeirstinsightsgainedfromaknowledgeengineeringperspective(butforthesakeofbrevity,werefertotheoutputdocumentsintheexperimentsupplements)
–TheJSON-LDoutputformatprioritizesusageofvocabularyinthe5evaluationruns.Thisworksgoodforwell-knownentitiesandproperties(e.g.Organization@typeforthemanufacturer,orthenameproperty),how-ever,fortheAM-speciicfeaturekeynamesortermslikeprinterChatGPT-
3inventsreasonablebutnon-existentpropertynames(inthenamespace)insteadofaccuratelycreatinganewnamespaceorusingaded-icatedAMontologyforthatpurpose.
–Requestingturtleasoutputformatinstead,leadstodiferentresults.E.g.thepropertynamespacepreixisbasedontheprinterIDandthereforeprinterdescriptionsarenotinteroperableandcannotbequeriedinuni-iedwayinajointKG.
–Successfullysplittingx,yandzvaluesofthemaximumprintdimension(in-steadofextractingalldimensionsintoonestringliteral)worksin3runs.AlthoughChatGPT-3accuratelyappendstheunitofmeasurementtoallx,y,zvalues(whichisonlymentionedafterthezvalueintheinput)inthosecases,thisisamodellinglaw,asqueryingtheKGwillbemorecomplex.Inonerunitaddressedthisissuebyseparatingunitsintoaseparateunitcodeield.
8L.-P.Meyeretal.
–Asimilarefectwasobservedwhenitcomestomodellingthedependenten-tities.E.g.,in4runs,themanufacturerwasmodelledcorrectlyasaseparatetypedentity,in1asstringliteralinstead.
Asageneralconclusionoftheexperiment,ChatGPT-3hasoverallsolidskillstoextractthekeyvaluepairsfromthesheets,butthecorrectmodellingorrep-resentationintermsofaKGsigniicantlyvariesfromruntorun.Subsequently,noneofthegeneratedJSONdocumentscontainedsucientinformationontheirown,butonlyasubsetthatwasmodelledaccurately.Aquestionforfuturere-searchiswhethercherrypickingofindividualJSONelementsfromoutputsofseveralrunsandcombiningthemintooneinaldocumentoriterativelyreiningtheoutputbygivingChatGPTgenericmodellingfeedback(likeuseanontology,orseparateunitinformation,etc.)canbeautomatedinagoodandscalableway.
4.5KnowledgeGraphExploration
ExpertsintheieldofknowledgegraphsarefamiliarwithconceptsfromRDFSchema(RDFS)(domain/range,subPropertyOf,subClassOf)andWebOntol-ogyLanguage(OWL)(ObjectProperty,DatatypeProperty,FunctionalProperty,...).Often,eachoftheseexpertshastheirpreferredtoolsandmethodsforgaininganoverviewofanontologytheyarenotyetfamiliarwith.WeaskedChatGPT-3twodiferentquestionsrequestingthemermaid
11
visualizationofthemostimportantconceptsandtheirconnections:
Prompt6:Canyoucreatemeavisualizationshowingthemostimportantclassesandconceptsandhowtheyarelinkedfordbpediaontology,serializedformermaid?
Prompt7:CanyoucreatemeavisualizationofthemostcommonconceptsoftheDBpediaontologyandtheirconnectionsfocusingondomainandrangedeinedinproperties.
Weexpectedagraphwithatleasteightnodesandtheircorrespondingedges.TheidentiiersforthenodesandedgesareexpectedtofollowtheTurtleorSPARQLprefix:conceptnotation.Iftheirstquestiondidnotachievethegoal,weaskedadditionalquestionsordemandstoChatGPT-3.Theresultsarepresentedintable
4
andweevaluatedthedisplayedgraphsbasedonthefollowingcriteria:
Prompt
6
ledtoananswerwithahierarchicalgraphrepresentationoftheimportantclassesdeinedintheDBpediaontology.Thediagramalreadymetourrequirementsregardingtheminimumnumberandlabellingaftertheirstanswerandcanbeseeninthe
SupplementalOnlineResources
.
Theclasshierarchywasrepresentedbytherdfs:subPropertyOfrelation,andthenodeswerelabelledinpreixnotation,asweretheedges.Byarranging
11“...aJavaScript-baseddiagrammingandchartingtool...”
/
9
LLM-assistedKnowledgeGraphEngineering:ExperimentswithChatGPT
Table4.Diagramcontentoverview.
Prompt
6
Prompt
7
MermaidType
LabelsofNodes
LabelsofEdges
NumberofNodes(total/existing/dbo)NumberofEdges(total/unique)
graphgraph*preixandconceptpreixandconcept**preixandconceptpreixandconcept**
10/10/8
12/2
13/12/12
17/17
*Onemorepromptwasneededtoserializeagraph
**Onemorepromptwasneededtoaddpreixedlabels
itasatreeusingthesubClassOf-pattern,onlytwodiferentpropertieswereusedfortherelations(edges).Therootnodewasoftypeowl:Thingothernodesareconnectedas(sub)classesfromtheDBpediaontology.Thesewere:Place,Organi-zation,Event,Work,Species,andPerson.TheclassWorkhadonemoresubClas-sOfrelationtotheclassMusicalWork.TheclassPersonhadthemostcomplexrepresentation,withtwomoresubClassOfrelationsleadingtofoaf:Personandfoaf:Agent,thelatterofwhichisasubclassoftherootnode(owl:Thing).
Inthesecondprompt(Prompt
7
ChatGPT-3referredtoagraphicilewithintheanswertextthatnolongerexisted.Uponfurtherinquiry,amermaiddia-gramwasgenerated.Itwasoftype”Graph”andcontainedthirteencommonconceptsandseventeenedges,whichwereallunique.Thelabelsofboth,nodesandedgescontainnopreixes,butwereaddablewithfurtherinquiry.Onlythegeneratedconceptdbo:Occupationisnon-existent.Allremainingnodesandedgescomplywiththerulesoftheontology,eveniftheconceptsusedarede-rivedthroughfurthersubclassrelationships.Theresultingdiagramisshowninthe
SupplementalOnlineResources
.
Whileprompt
6
leadstoaresultthatcanbemorecomprehensivelyachievedwithconventionaltoolsforvisualizingRDF,theresultfromprompt
7
providesanoverviewofconcepts(classes)andpropertiesthatcanbeusedtorelateinstancesoftheseclassestoeachother.
5ConclusionandFutureWork
Fromtheperspectiveofaknowledgegraphengineer,ChatGPThasdemon-stratedimpressivecapabilities.Itsuccessfullygeneratedknowledgegraphsfromsemi-structuredtextualdata,translatednaturallanguagequestionsintosyn-tacticallycorrectandwell-structuredSPARQLqueriesforthegivenknowl-edgegraphs,andevengeneratedoverviewdiagramsforlargeknowledgegraphschemas,asoutlinedinsection
4
.Andetailedanalysisrevealedthatthegener-atedresultscontainmistakes,ofwhichsomearesubtle.Forsomeusecases,thismightbeharmlessandcanbetackledwithadditionalvalidationstepsingeneral,
likewiththemetricsweusedforSPARQLqueries.Ingeneral,ourconclusionis,
thatoneneedstokeepinmindChatGPT’stendencytohallucinate
12
,especially
12Generationofcontentwithoutanyfoundation
10L.-P.Meyeretal.
whenappliedtotheieldofknowledgegraphengineeringwheremanyengineersareusedtomathematicalprecisionandlogic.
Theclosed-sourcenatureofChatGPTchallengesscientiicresearchonitintwoways:1.Detailedcapabilityratingsofclosed-sourceprobabilisticmodelsrequiremuchefort2.Resultreproducibilityisboundtoserviceavailabilityandresultsmightbeirreproducibleatalaterdate(duetoservicechanges)Thus,opentrainingcorporaandLLMSaremandatoryforproperscientiicresearch.
Inthefuture,metricsaretobefoundtorategeneratedChatGPTanswersautomatically,likewebroachedwithSPARQLqueries.Thisagainenablestoex-tendthenumberoftestcasesforaspeciicexperimentandtogenerateprofoundstatisticalresults.AnotherresearchfocusshouldbegiventomethodsthatlettheLLMaccessabroader/necessarycontexttoincreasethechanceforcorrectanswers.
AcknowledgementsThisworkwaspartiallysupportedbygrantsfromtheGermanFederalMinistryforEconomicAfairsandClimateAction(BMWK)totheCoyPuproject(01MK21007A)andKISSproject(01MK22001A)aswellasfromtheGermanFederalMinistryofEducationandResearch(BMBF)totheprojectSt
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 燃气设施维护周期与安全检测标准
- 2025-2030中国消化系统药物技术创新与专利布局分析报告
- 2025-2030中国智能仓储机器人系统集成商核心竞争力构建报告
- 2025-2030中国文化旅游产业融合趋势及市场增长分析报告
- 2025-2030中国抗生素耐药性检测产品市场教育与推广策略研究报告
- 2025-2030中国手术室数字化整体解决方案商业模式创新研究报告
- 2025年征信行业自律管理信用报告试题
- 基于GIS的城市重大危险源风险管理:技术融合与实践创新
- 银行网点营销促销活动方案
- 基于FPGA的全数字超声诊断系统核心算法实现与优化研究
- 心源性休克病人的护理
- 如何落实责任制整体护理
- 家政中介服务线上平台运营方案
- 2025-2026学年华中师大版(2024)小学体育与健康一年级(全一册)教学设计(附目录P123)
- 第13课 美丽中国我的家(教学课件)小学二年级上册 统编版《道德与法治》新教材
- 北师大版(2024)二年级上册《参加欢乐购物活动》单元测试卷(含解析)
- 医学影像科危急值管理规范
- 2026年中考历史复习:非选择题 答题技巧
- 多肉教学课件
- 茅台镇酱酒文化课件
- 药物分析 课件 唐倩 第1-7章 绪论、药物的性状检查与鉴别实验 -芳胺类及芳烃胺类药物的分析
评论
0/150
提交评论